YEAR 2 of 7 (2013) ANNUAL MONITORING REPORT HERMAN DAIRY STREAM AND WETLAND RESTORATION SITE Alexander County, North Carolina Full Delivery Contract No. 003271

Catawba River Basin Cataloging Unit and Targeted Local Watershed 03050101120030

Prepared By: Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604

and

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

Submitted to: NCDENR Ecosystem Enhancement Program Raleigh, North Carolina

NOVEMBER 2013

TABLE OF CONTENTS

1
3
3
4
4
4
5
•

FIGURES

Figure 1. Site Location	Appendix A
Figures 2, 2A-2B. Consolidated Current Conditions Plan View	
Figure E1. Annual Climatic Data vs. 30-year Historic Data	Appendix E
Figure F1. Preconstruction Benthic Station Locations	Appendix F

APPENDICES

APPENDIX A. FIGURES

Figure 1. The Site Location Figures 2, 2A-2B. Consolidated Current Conditions Plan View

APPENDIX B. GENERAL TABLES

 Table 1. Project Restoration Components

- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes Table

APPENDIX C. VEGETATION ASSESSMENT DATA

Table 5. Vegetation Plot Mitigation Success Summary Table

Table 6. CVS Vegetation Metadata Table

Table 7. CVS Stem Count Total and Planted by Plot and Species

Vegetation Plot Photographs

APPENDIX D. STREAM ASSESSMENT DATA

Stream Station Photos

Table 8a-8c. Visual Assessment Tables

 Table 9. Verification of Bankfull Events

Tables 10a-10b. Baseline Stream Data Summary

Tables 11a-11c. Monitoring Data-Dimensional Data Summary

Longitudinal Profile Plots

Cross-section Plots

APPENDICES (continued)

APPENDIX E. HYDROLOGY DATA

Table 12. Wetland Hydrology Criteria Attainment 2013 Groundwater Gauge Graphs Figure E1. Annual Climatic Data vs. 30-year Historic Data

APPENDIX F. BENTHIC DATA

2013 Benthic Data Lab Results2013 Habitat Assessment Field Datasheets

1.0 EXECUTIVE SUMMARY

Restoration Systems, LLC has established the Herman Dairy Stream and Wetland Mitigation Site (Site) located approximately 1.5 miles northwest of Taylorsville, in central Alexander County within 14-digit Cataloging Unit and Targeted Local Watershed 03050101120030 of the Catawba River Basin. The Site encompasses approximately 31.12 acres of land previously used for agricultural row crop production and the spray application of sludge from a lagoon associated with a dairy cattle operation. The Site was identified to assist the North Carolina Ecosystem Enhancement Program (NCEEP) in meeting its stream and wetland restoration goals. This report (compiled based on EEP's *Guidance and Content Requirements for EEP Monitoring Reports* Version 1.2.1 dated 12/1/09) serves as the Year 2 (2013) annual monitoring report.

The primary goals and objectives of this stream and wetland restoration project focused on improving water quality, enhancing flood attenuation, and restoring wildlife habitat and will be accomplished by the following.

- 1. Removing nonpoint sources of pollution associated with agricultural production including a) cessation of broadcasting sludge, fertilizer, pesticides, and other agricultural materials into and adjacent to Site streams/wetlands and b) restoration of a forested riparian buffer adjacent to streams and wetlands to treat surface runoff.
- 2. Reducing sedimentation within onsite and downstream receiving waters through a) reduction of bank erosion, vegetation maintenance, and plowing to Site streams and wetlands and b) restoration of a forested riparian buffer adjacent to Site streams and wetlands.
- 3. Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile supported by natural in-stream habitat and grade/bank stabilization structures.
- 4. Promoting floodwater attenuation by a) reconnecting bankfull stream flows to the abandoned floodplain, b) restoring secondary, entrenched tributaries thereby reducing floodwater velocities within smaller catchment basins, c) restoring depressional floodplain wetlands to increase the floodwater storage capacity within the Site, and d) revegetating Site floodplains to increase frictional resistance on floodwaters crossing Site floodplains.
- 5. Improving aquatic habitat by enhancing stream bed variability and the use of in-stream structures.
- 6. Providing a terrestrial wildlife corridor and refuge in an area extensively developed for agricultural production.
- 7. Restoring and reestablishing natural community structure, habitat diversity, and functional continuity.
- 8. Enhancing and protecting the Site's full potential of stream and wetland functions and values in perpetuity.

<u>Vegetation Success Criteria</u>: An average density of 320 stems per acre of Characteristic Tree Species must be surviving in the first three monitoring years. Subsequently, 290 Characteristic Tree Species per acre must be surviving in year 4, 260 Characteristic Tree Species per acre in year 5, and 210 Characteristic Tree Species per acre in year 7. No single volunteer species (most notably red maple, loblolly pine, and sweet gum) will comprise more than 20 percent of the total composition at years 3, 5, or 7. If this occurs, remedial procedures/protocols outlined in the contingency plan will be implemented. During years 3, 5,

and 7, no single volunteer species, comprising over 20 percent of the total composition, may be more than twice the height of the planted trees. If this occurs, remedial procedures outlined in the contingency plan will be implemented. If, within the first 3 years, any species exhibits greater than 50 percent mortality, the species will either be replanted or an acceptable replacement species will be planted in its place as specified in the contingency plan.

<u>Vegetation Results</u>: Vegetation sampling across the Site was above the required average density with 486 planted stems per acre surviving. In addition, 9 out of 10 individual plots exceeded success criteria, with plot 4 being only one stem shy of the required stem density. Treatment for invasive species, primarily Chinese privet (*Ligustrum sinense*) was initiated prior to construction and will continue as necessary, primarily within areas denoted on Figures 2 and 2A-2B (Appendix A). In addition, replanting will occur during the winter of 2013/2014 in the southeastern portion of the Site between UT2 and UT3.

<u>Stream Success Criteria</u>: Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system. The channel configuration will be measured on 3000 linear feet of stream and 20 cross-sections on an annual basis in order to track changes in channel geometry, profile, or substrate. These data will be utilized to determine the success in restoring stream channel stability. Specifically, the width-to-depth ratio and bank-height ratios should be indicative of a stable or moderately unstable channel with minimal changes in cross-sectional area, channel width, and/or bank erosion along the monitoring reach. In addition, channel abandonment and/or shoot cutoffs must not occur and sinuosity values must remain relatively constant. Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

<u>Stream Results</u>: As a whole, monitoring measurements indicate there have been minimal changes in both the longitudinal profile and cross-sections as compared to as-built data. The as-built channel geometry compares favorably with the emulated, stable E/C type stream reach as set forth in the detailed mitigation plan and construction plans. Current monitoring has demonstrated dimension, pattern, and profile were stable over the course of the monitoring period. No stream problem areas were noted during Year 2 (2013) monitoring.

<u>Hydrology Success Criteria</u>: According to the *Soil Survey of Alexander County*, the growing season for Alexander County as recorded in Hickory, North Carolina during the period from 1951-1984 is from March 20-November 9 (235 days) (USDA 1995). Year 1 (2012) groundwater gauge installation occurred between March 30 and April 4, 2012; therefore, given the date of groundwater gauge installation and the initiation of monitoring, Year 1 groundwater monitoring utilized the published growing season dates from the county soil survey for success criteria. However, in future monitoring years, if soil temperatures and/or vegetative growth (bud burst) is documented, project gauge hydrologic success will be determined using dates from February 1-November 9 (282 days) to more accurately represent the period of biological activity (see following "Summary of Hydrology Success Criteria by Year" table.

Target hydrological characteristics include saturation or inundation for 8 percent of the monitored period, during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	8 Percent of Monitoring Period
2012 (Year 1)		March 20-November 9 (235 days)	19 days
2013 (Year 2)	No bud burst during February 13-14, 2013 Site visit	March 20-November 9 (235 days)	19 days
2014 (Year 3)			
2015 (Year 4)			
2016 (Year 5)			

Summary of Hydrology Success Criteria by Year

<u>Hydrology Results</u>: All ten Site groundwater monitoring gauges and the reference gauge exhibited inundated/saturated within 12 inches of the surface for greater than 8 percent of the growing season. All gauges were well above success criteria for monitoring Year 2 (2013).

<u>Benthics</u>: Habitat Assessment Field Data Sheet scores for UT 1 increased from a total score of 45 prior to restoration to 69 in the second annual monitoring year. Similarly, UT 2 improved from a score of 36 to 78 and UT3 improved from a score of 21 to 81 after two years of monitoring. Benthic results and Habitat Assessment Field Data Sheets are included in Appendix F.

<u>In summary</u>: Site vegetation, streams, and wetland hydrology met success criteria for Year 2 (2013) monitoring. Summary information and data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Document (formerly Mitigation Plan) and in the Mitigation Plan (formerly called the Restoration Plan) documents available on EEPs website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology (Figure 2, Appendix A). Stream morphology is proposed to be monitored for a period of five years. Riparian vegetation is proposed to be monitored for a period of seven years. Wetland hydrology is proposed to be monitored for a period of five years; at which time a request will be made to the IRT to discontinue groundwater hydrology monitoring. The IRT reserves the right to request additional groundwater monitoring if it deems necessary. Monitoring reports of the data collected will be submitted to the IRT no later than December of each monitoring year.

2.1 Vegetation Assessment

After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Ten sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Plots were measured in July 2013 for Year 2 monitioring. Vegetation plots are permanently monumented with 4-foot metal garden posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot information can be found in Appendix C.

2.2 Stream Assessment

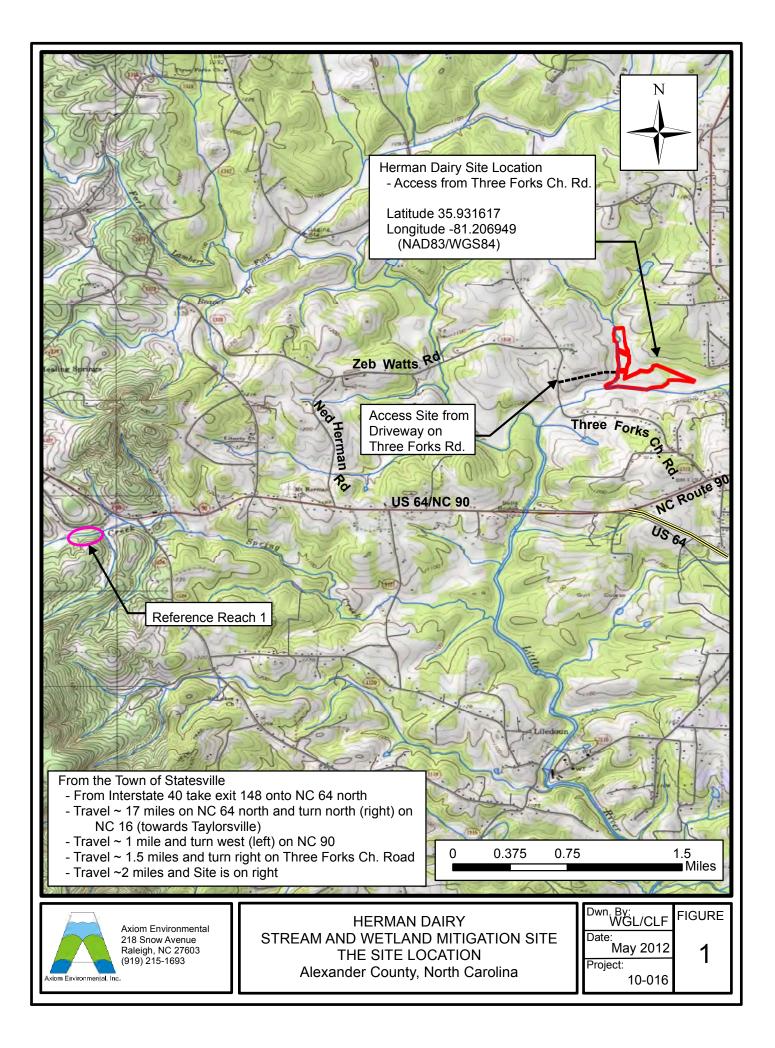
Restored stream reaches are proposed to be monitored for geometric activity for five years. Annual fall monitoring will include development of 20 channel cross-sections on riffles and pools and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) water surface slope, and 7) sinuosity. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year. Stream data can be found in Appendix D.

2.3 Wetland Assessment

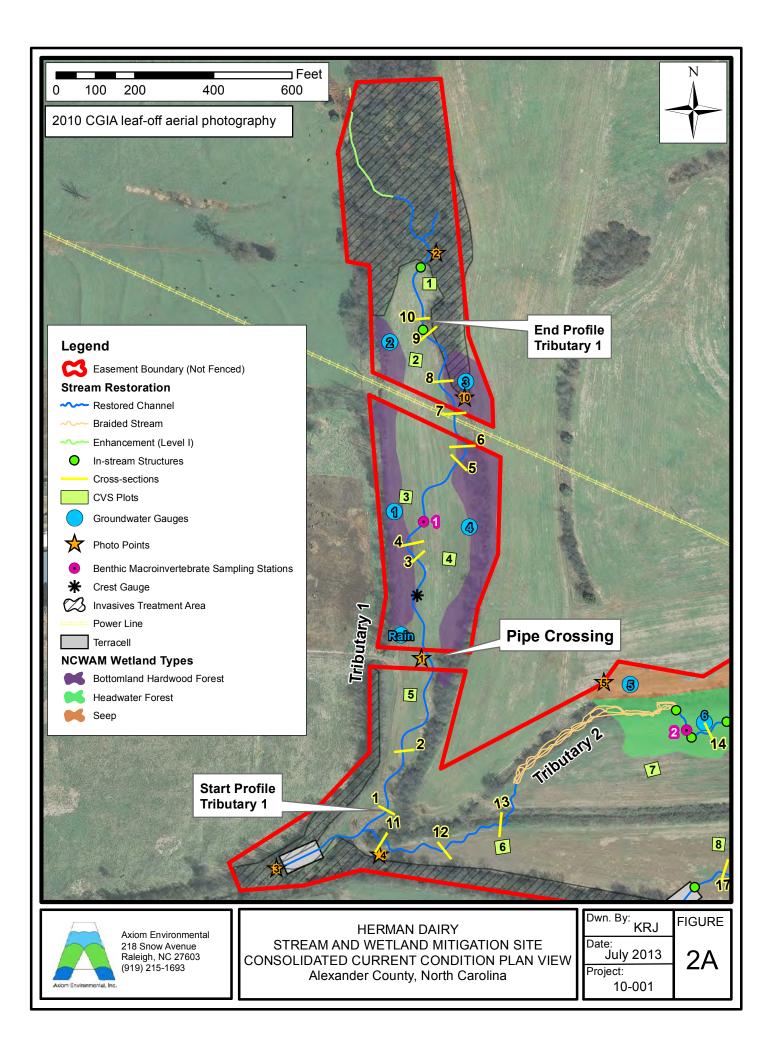
Ten groundwater monitoring gauges were installed within Site wetland restoration areas and one additional gauge was installed in a reference wetland to monitor groundwater hydrology (Figure 2, Appendix A). Hydrological sampling will continue for five years throughout the growing season at intervals necessary to satisfy the hydrology success criteria within each design unit (USEPA 1990). In addition, an onsite rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions. The rain gauge was malfunctioning for most of the Year 2 (2013) monitoring season; therefore, a nearby weather station was used. Finally, groundwater gauges located within riverine wetlands adjacent to restored stream reaches will supplement crest gauge measurements to confirm overbank flooding events. Graphs of groundwater hydrology and precipitation from a nearby rain station are included in Appendix E.

2.4 Biotic Community Changes

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track changes during the monitoring period. The benthic macroinvertebrate community will be sampled using North Carolina Division of Water Quality (NCDWQ) protocols found in the Standard Operating Procedures for Benthic Macroinvertebrates (NCDWQ 2006) and Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with post-construction restored conditions.


Benthic macroinvertebrate monitoring locations were established within Site restoration reaches. Postconstruction collections occurred in approximately the same locations as pre-construction sampling; however, sampling was not possible in UT 3 in Year 1 (2012) due to lack of stream flow. Benthic macroinvertebrate samples were collected using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Postconstruction biological sampling occurred on June 15, 2013 for Year 2 monitoring; post-construction monitoring will occur in June of each monitoring year. Identification of collected organisms was performed by Pennington and Associates, a NCDWQ certified laboratory. Results and Habitat Assessment Field Data Sheets are enclosed in Appendix F.

3.0 **REFERENCES**


- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1995. Soil Survey of Alexander County, North Carolina. Natural Resources Conservation Service, United States Department of Agriculture.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). USEPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.
- Weather Underground. 2013. Station at Hickory Airport, North Carolina. (online). Available: <u>http://www.wunderground.com/history/airport/KHKY/2013/10/31/DailyHistory.html</u> [October 31, 2013]. Weather Underground.

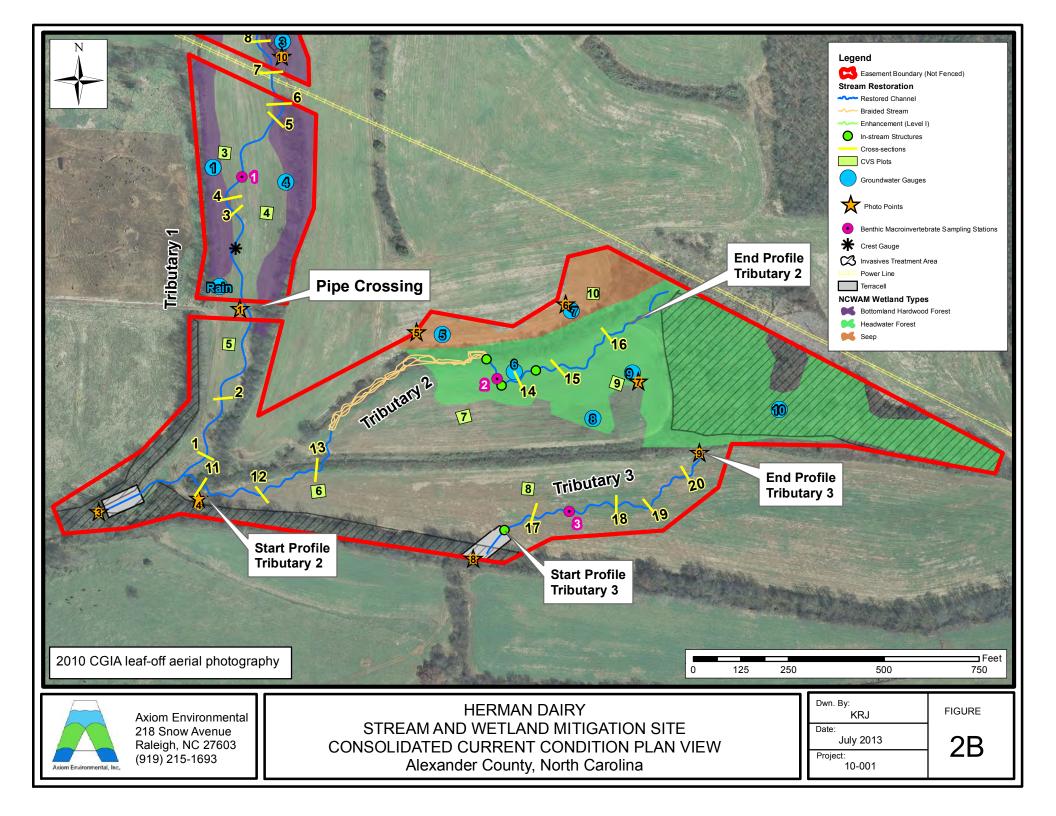

Appendix A. Figures

Figure 1. The Site Location Figures 2, 2A-2B. Consolidated Current Conditions Plan View

Appendix B. General Project Tables

Table 1. Project Restoration Components Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attribute Table

Table 1. Project Restoration ComponentsHerman Dairy Restoration Site

v			Mitigation	Credits							
Stream			Rip	arian Wetland		Nonriparian Wetland					
Restoration	Restoration Equiva	lent	Restoration	Restoration Equivalent							
4560	220		7.2	1.1		1.2 0.05					
Projects Components											
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio		Comment				
UT1 10+00-31+67.8* UT1A 10+00-10+85.71 UT2 10+00-16+69.04, 21+50.67-27+10.09 UT3 10+00-17+28.39	4540	Ι	Restoration	3997	1:1		estoration through construction of the historic floodplain elevation.				
UT2 16+69.04-21+50.67 UT3 upper 81.10 linear feet			Restoration	563	1:1	across riparian wet	oration by redirecting diffuse flow lands. Linear footage of stream is traight line valley distance.				
UT1 upper 330.00 linear feet	330	Level I	Enhancement	330	1.5:1	Level I stream enhancement through cessation current land use practices, removing invasive sp and planting with native forest vegetation.					
	0		Restoration	7.2	1:1	Restoration of riparian wetlands within the floodp as the result of stream restoration activities, fillin abandoned channels and ditches, removing spoi castings, and planting with native forest vegetation					
	2.2		Enhancement	2.2	2:1	Enhancement of existing riparian wetlands characterized by disturbed pasture by planting native forest vegetation.					
	0		Restoration	1.2	1:1	castings, filling aba soils along the slop	parian wetlands by removing spoil ndoned ditches to rehydrate hydric be, eliminating land use practices, with native forest vegetation.				
	0.1		Enhancement	0.1	2:1	characterized by d	f existing nonriparian wetlands isturbed pasture by planting with re forest vegetation.				
			Component S	ummation							
Restoration Level	Stream (linear foo	otage)	Riparian V	Wetland (acreage)		Nonriparian V	Vetland (acreage)				
Restoration	4560			7.2			1.2				
Enhancement (Level 1)	330										
Enhancement				2.2			0.05				
Totals	4890			9.4			1.25				
Mitigation Units	4780 SMUs			oarian WMUs			parian WMUs				

*Restoration linear footage excludes 145.76 linear feet of stream located within the utility easement and 67.79 linear feet of stream located within a culverted crossing, which are both excluded from the easement.

Table 2. Project Activity and Reporting HistoryHerman Dairy Restoration Site

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Technical Proposal (RFP No. 16-002830)		March 2010
EEP Contract No. 003271		July 23, 2010
Restoration Plan		January 2011
Construction Plans		August 2011
Construction Earthwork		March 2012
Invasive Species Treatment		Ongoing
As-Built Documentation		June 2012
Year 1 (2012) Annual Monitoring	September 2012	October 2012
Year 2 (2013) Annual Monitoring	October 2013	November 2013

Table 3. Project Contacts Table Herman Dairy Restoration Site

Full Delivery Provider	Restoration Systems							
Fun Denvery Frovider	1101 Haynes Street, Suite 211							
	Raleigh, North Carolina 27604							
	George Howard and John Preyer							
	919-755-9490							
Designer	Axiom Environmental, Inc.							
	218 Snow Avenue							
	Raleigh, NC 27603							
	Grant Lewis 919-215-1693							
	919-215-1693							
Construction Plans and Sediment and	Sungate Design Group, PA							
Erosion Control Plans	915 Jones Franklin Road							
	Raleigh, NC 27606							
	W. Henry Wells, Jr, PE 919-859-2243							
Construction and Planting Contractor	Land Mechanic Designs							
	780 Landmark Road							
	Willow Spring, NC 27592							
	Lloyd Glover 919-639-6132							
As-built Surveyor	K2 Design Group							
v	5688 US Highway 70 East							
	Goldsboro, NC 27534							
	John Rudolph 919-751-0075							
Baseline Data Collection and Annual	Axiom Environmental, Inc.							
Monitoring	218 Snow Avenue							
	Raleigh, NC 27603							
	Grant Lewis 919-215-1693							

Table 4. Project Attribute TableHerman Dairy Restoration Site

Herman Dairy Restoration Site	A 1		1.						
Project County		der County, North C							
Physiographic Region	Northern Inner Piedmont								
Ecoregion	Carolina Slate Belt								
Project River Basin	Catawba								
USGS HUC for Project (14 digit)		03050101120030							
NCDWQ Sub-basin for Project		03-08-32							
Identify planning area (LWP, RBRP, other)?	Yes – Upper Cata	wba River Basin Res 2009	storation Priorities						
WRC Class (Warm, Cool, Cold)		Warm							
% of project easement fenced or demarcated		100							
Beaver activity observed during design phase?		Yes							
	Unnamed	l Tributaries to Mu	ddy Fork						
	UT 1	UT 2	UT 3						
Drainage Area	1.0	0.06	0.04						
Stream Order (USGS topo)	2nd	1st	1 st						
Restored Length (feet)	2156	1684	760						
Perennial (P) or Intermittent (I)	Р	Р	Ι						
Watershed Type	Rural	Rural	Rural						
Watershed impervious cover	<5%	<5%	<5%						
NCDWQ AU/Index number	11-69-4	11-69-4	11-69-4						
NCDWQ Classification	С	С	С						
303d listed?	No	No	No						
Upstream of a 303d listed	Yes	Yes	Yes						
Reasons for 303d listed segment	aquatic life/sediment	aquatic life/sediment	aquatic life/sediment						
Total acreage of easement	31.12	31.12	31.12						
Total existing vegetated acreage of easement	8	8	8						
Total planted restoration acreage	31.5	31.5	31.5						
Rosgen Classification of preexisting	Cd5	Fc5/6	Fc5/6						
Rosgen Classification of As-built	E/C 4/5	E/C 4/5	E/C 4/5						
Valley type	VIII	VIII	VIII						
Valley slope	0.0066	0.0052	0.0013						
Cowardin classification of proposed	R3UB1/2	R3UB1/2	R4SB3/4						
Trout waters designation	NA	NA	NA						
Species of concern, endangered etc.	NA	NA	NA						
Dominant Soil Series	Codorus/Hatboro	Codorus/Hatboro	Codorus/Hatboro						

Appendix C. Vegetation Assessment Data

Table 5. Vegetation Plot Mitigation Success Summary Table
Table 6. CVS Vegetation Metadata Table
Table 7. CVS Stem Count Total and Planted by Plot and Species
Vegetation Plot Photographs

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	No	
5	Yes	000/
6	Yes	90%
7	Yes	
8	Yes	
9	Yes	
10	Yes	

 Table 5. Vegetation Plot Mitigation Success Summary Table

Table 6. CVS Vegetation Metadat	
Report Prepared By	Corri Faquin
Date Prepared	8/6/2013 11:53
database name	RS-HermanDiary-2013-A-v2.3.1.mdb
database location	\\AE-SBS\RedirectedFolders\KJernigan\Desktop
computer name	KEENAN-PC
file size	51363840
DESCRIPTION OF WORKSHEETS IN	THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted
Proj, total stems	stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of total stems impacted by
Damage	each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
Planted Stems by Plot and Spp	excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for
ALL Stems by Plot and spp	each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	Herman
project Name	Herman Dairy
Description	Stream and wetland restoration Alexander County NC
River Basin	Catawba
Sampled Plots	10

 Table 6. CVS Vegetation Metadata Table

Table 7. CVS Stem Count Total and Planted by Plot and Species

Herman Dairy Stream and V	nan Dairy Stream and Wetland Restoration Site										Cur	rent Pl	ot Data	(MY2 2	013)								
			Herman-P-0001 Herman-P-0002			Herman-P-0003			Herman-P-0004		Herman-P-0005			Her	man-P-	0006	Herman-P-0007						
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree																		9			
Acer rubrum	red maple	Tree			8																		
Betula nigra	river birch	Tree	4	4	4	4	4	4	l 1	1	1	. 1	. 1	. 1				1	1	1			
Carpinus caroliniana	American hornbeam	Tree													2	2	2						
Carya	hickory	Tree							1	1	1				1	1	1						
Cephalanthus occidentalis	common buttonbush	Shrub																			1	. 1	1 1
Cornus amomum	silky dogwood	Shrub	2	2	2																		
Fraxinus pennsylvanica	green ash	Tree	1	1	1	1	1	1	4	4	4	. 3	3 3	3	1	1	1	3	3	3	4	. 4	1 2
Liriodendron tulipifera	tuliptree	Tree	1	1	5	1	1	1	L									6	6	6	3	3	3 3
Nyssa	tupelo	Tree							6	6	6	5			6	6	6						
Platanus occidentalis	American sycamore	Tree									1	-						1	1	1			
Quercus	oak	Tree																					
Quercus nigra	water oak	Tree													2	2	2						
Quercus pagoda	cherrybark oak	Tree	2	2	2	2	2	2	2 2	2	2	. 3	3 3	3	2	2	2	3	3	3	2	. 2	2 2
Quercus phellos	willow oak	Tree													1	1	1						
Ulmus americana	American elm	Tree																					
Unknown		Shrub or Tree													1	1	1						
		Stem count	10	10	22	8	8	8	3 14	14	15	5 7	' 7	/ 7	16	16	16	14	14	23	10	10	0 10
		size (ares)		1			1			1			1	-		1			1			1	-
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	6	4	4	4	l 5	5	6	5 3	3 3	3	8	8	8	5	5	6	4	. 4	1 2
		Stems per ACRE	404.7	404.7	890.3	323.7	323.7	323.7	566.6	566.6	607	283.3	283.3	283.3	647.5	647.5	647.5	566.6	566.6	930.8	404.7	404.7	7 404.7

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Herman Dairy Stream and Wetland Restoration Site Current Plot Data (MY2 2013) **Annual Means** Herman-P-0008 Herman-P-0009 Herman-P-0010 MY2 (2013) MY1 (2012) MY0 (**Scientific Name** Common Name Species Type PnoLS P-all T PnoLS P-all Т PnoLS P-all T PnoLS P-all T PnoLS P-all Т PnoLS P-a Acer negundo boxelder Tree Acer rubrum red maple Tree Betula nigra river birch Tree Carpinus caroliniana American hornbeam Tree hickory Carya Tree Shrub Cephalanthus occidentalis common buttonbush Cornus amomum silky dogwood Shrub Fraxinus pennsylvanica Tree green ash Liriodendron tulipifera tuliptree Tree tupelo Tree Nyssa Platanus occidentalis American sycamore Tree Quercus oak Tree Quercus nigra Tree water oak Quercus pagoda cherrybark oak Tree Quercus phellos willow oak Tree Ulmus americana Tree American elm Unknown Shrub or Tree Stem count size (ares) size (ACRES) 0.02 0.02 0.02 0.25 0.25 0. Species count Stems per ACRE 526.1 526.1 526.1 647.5 647.5 2509 485.6 485.6 485.6 485.6 485.6 760.8 477.5 477.5 756.8 **586.8** 58

Table 7. CVS Stem Count Total and Planted by Plot and Species (continued)

Color for Density

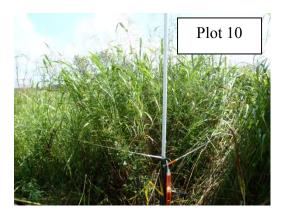
Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

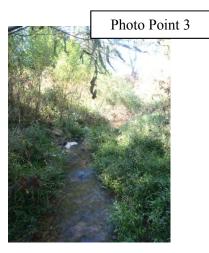
Fails to meet requirements by more than 10%

(201	
all	Т
41	41
3	3
2 32	2
32	32
25	25
1	1
6	6
23	23
2	2 10
10	
145	145
10	
25	
10 36.8	10
36.8	586.8

Herman Dairy 2013 (Year 2) Vegetation Monitoring Photographs Taken July 2013



Herman Dairy 2013 (Year 2) Vegetation Monitoring Photographs Taken July 2013 (continued)



Appendix D. Stream Assessment Data

Stream Station Photos Table 8a-8c. Visual Assessment Tables Table 9. Verification of Bankfull Events Tables 10a-10c. Baseline Stream Data Summary Tables 11a-11e. Monitoring Data-Dimensional Data Summary Longitudinal Profile Plots Cross-section Plots Herman Dairy Fixed Station Photographs Taken October 2, 2013

Herman Dairy Fixed Station Photographs (continued) Taken October 2, 2013

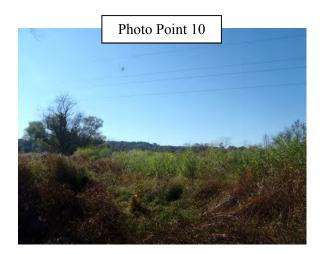


Table 8A Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Tributary 1 1374

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Ī
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%	I
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%	1
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	19			100%	l	
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	20	20			100%	l
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%	1
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100			100%	1	
		2. Thalweg centering at downstream of meander (Glide)	100	100		100%	1	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	Γ
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	
	3. Mass Wasting	s Wasting Bank slumping, calving, or collapse			0	0	100%	
		-		Totals	0	0	100%	I
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%	
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%	
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	2	2			100%	
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%	

Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
		100%
		100%
		100%
0	0	100%

Table8B Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Tributary 2 1522

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	39	39		-	100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	37	37			100%
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100	100			100%
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
			_	Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	3			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	3	3			100%

Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
		100%
		100%
		100%
0	0	100%

Table 8C Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Tributary 3 644

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	27	27		-	100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	27	27			100%
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100	100			100%
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%
			•				
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%

Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
		100%
		100%
		100%
0	0	100%

 Table 9. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 11, 3013	May 6, 2013	Sediment deposits observed on top of banks after 3.00 inches of rain was documented* over a two-day period.	
July 18, 2013	June 6, 2013	Wrack observed on top of bank and throughout floodplain after 4.27 inches of rain was documented* over a two-day period.	1-2

*Weather Underground (2013)

Table 10A. Baseline Morphology and Hydraulic SummaryHerman Dairy UT 1

Parameter	USG	S Gage	Data		re-Exist Conditie	0	•	ect Refe n UT Ca		•	ect Refe Reach 1			Design			As-built	ţ
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	ata is	16	19	18	9	12	10	9	10	10	16	18	17	15.5	16.4	16.1
Floodprone Width (ft)	unava	ailable fo	or this	26	150	150	25	150	50	22	25	24			150			250
BF Cross Sectional Area (ft2)		project				20.2			10.9			11.8	36	53	20.2	14	18.2	16.4
BF Mean Depth (ft)				1.1	1.3	1.2	1.1	1.3	1.1	1.2	1.3	1.3	1.1	1.3	1.2	0.9	1.1	1
BF Max Depth (ft)				1.9	2.3	2	1.5	1.8	1.7	1.5	1.6	1.6	1.4	1.8	1.6	1.2	1.6	1.4
Width/Depth Ratio				12	17	16	8	13	10	7.2	8	7.6	12	16	14	14	17	16
Entrenchment Ratio				1.6	9.6	7.9	2.7	14.6	4.9	2.3	2.7	2.5	8	10	9	15	16	16
Bank Height Ratio				1.8	3.1	1.9			1			1	1	1.3	1.1			1
Wetted Perimeter(ft)						===			===						===	15.9	16.8	16.7
Hydraulic radius (ft)						===			===			==			===	0.9	1.1	1
Pattern																		
Channel Beltwidth (ft)					attern o		30	40	35	35	58	45	50	101	67	50	101	67
Radius of Curvature (ft)					l pools d		12.5	25	18	10	32	16	34	168	50	34	168	50
Meander Wavelength (ft)				straigh	ntening a	activties	25	70	45	65	128	81	101	202	143	101	202	143
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern o				===			=			====	23	65	36
Riffle slope (ft/ft)					l pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	1.10%	1.65%	1.38%	0.00%	1.50%	0.64%
Pool length (ft)				straigh	ntening a	activties			===						===	10	54	32
Pool spacing (ft)							22	62	39	29	103	60	50	134	67	50	134	67
Substrate																		
d50 (mm)						===			===						===			===
d84 (mm)						===			====			=			===			===
Additional Reach Parameters							-	-	-									-
Valley Length (ft)						===			===			===			===			
Channel Length (ft)					1	===	1	1	===			===			===			2108
Sinuosity						1.1			1.4			1.4			1.2			1.2
Water Surface Slope (ft/ft)						0.62%			0.28%			1.27%			0.55%			0.53%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Cd 5			E 4/5			E 4/5			Ec4/5			E/C 4/5

*UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

Table 10B. Baseline Morphology and Hydraulic Summary Herman Dairy UT 2

Parameter	USG	S Gage I	Data		re-Exist Conditi	8	•	ect Refe 1 UT Ca		•	ect Refe Reach 1			Design			As-built	^
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage da	ata is	6	15	9	9	12	10	9	10	10	5.3	6.1	5.7	6.8	7.9	6.9
Floodprone Width (ft)	unava	ailable fo	or this	14	19	15	25	150	50	22	25	24			150			150
BF Cross Sectional Area (ft2)		project				2.3			10.9			11.8			2.3	2.2	2.4	2.3
BF Mean Depth (ft)				0.2	0.4	0.3	1.1	1.3	1.1	1.2	1.3	1.3	0.3	0.5	0.4	0.3	0.3	0.3
BF Max Depth (ft)				0.4	0.8	0.5	1.5	1.8	1.7	1.5	1.6	1.6	0.4	0.6	0.5	0.5	0.5	0.5
Width/Depth Ratio				16	76	30	8	13	10	7.2	8	7.6	12	16	14	20	27	21
Entrenchment Ratio				1.3	2.2	1.6	2.7	14.6	4.9	2.3	2.7	2.5	14	38	26	19	22	22
Bank Height Ratio				5	12	7			1			1	1	1.3	1.1			1
Wetted Perimeter(ft)						===			===			===			===	7	8	7.1
Hydraulic radius (ft)						===			===			===			===	0.3	0.3	0.3
Pattern																		
Channel Beltwidth (ft)					attern of		30	40	35	35	58	45	17	34	23	17	34	23
Radius of Curvature (ft)					l pools d		12.5	25	18	10	32	16	11	57	17	11	57	17
Meander Wavelength (ft)				straigi	htening a	activties	25	70	45	65	128	81	34	68	49	34	68	49
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4
Profile																		
Riffle length (ft)					attern o				===			===			===	6	44	14
Riffle slope (ft/ft)					l pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	0.86%	1.29%	1.08%	0.00%	1.25%	0.39%
Pool length (ft)				straigi	htening a	activties			===			===			===	6	32	13
Pool spacing (ft)							22	62	39	29	103	60	17	46	23	17	46	23
Substrate							-	•									-	
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			•
Channel Length (ft)						===			===			===			===			1696
Sinuosity						1.04			1.4			1.4			1.2			1.2
Water Surface Slope (ft/ft)						0.85%			0.28%			1.27%			0.43%			0.40%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Fc 5/6			E 4/5			E 4/5			Ec4/5			C 4/5

[^]Measured as-built numbers do not include D-type reach. *UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

Table 10C. Baseline Morphology and Hydraulic SummaryHerman Dairy UT 3

Parameter	USG	S Gage I	Data		re-Exist Conditio	0	•	ect Refe 1 UT Ca		•	ect Refe Reach 1			Design			As-built	t
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage da	ta is	6	9	7	9	12	10	9	10	10	6	7	6.5	6.8	8.5	7.7
Floodprone Width (ft)	unava	ailable for	this	12	13	12	25	150	50	22	25	24			150			150
BF Cross Sectional Area (ft2)		project				3			10.9			11.8			3	2.2	3.1	2.7
BF Mean Depth (ft)				0.3	0.5	0.4	1.1	1.3	1.1	1.2	1.3	1.3	0.4	0.6	0.5	0.3	0.4	0.4
BF Max Depth (ft)				0.6	0.9	0.7	1.5	1.8	1.7	1.5	1.6	1.6	0.6	0.8	0.7	0.5	0.5	0.5
Width/Depth Ratio				13	31	17	8	13	10	7.2	8	7.6	12	16	14	21	23	22
Entrenchment Ratio				1.4	1.9	1.7	2.7	14.6	4.9	2.3	2.7	2.5	22	25	23	17	22	19.5
Bank Height Ratio				4	7	6			1			1	1	1.3	1.1			1
Wetted Perimeter(ft)						===			===			===			===	7	8.7	7.9
Hydraulic radius (ft)						===			===			===			===	0.3	0.4	0.4
Pattern																		
Channel Beltwidth (ft)					attern of		30	40	35	35	58	45	20	39	26	20	39	26
Radius of Curvature (ft)					l pools d		12.5	25	18	10	32	16	13	65	20	13	65	20
Meander Wavelength (ft)				straigi	ntening a	activties	25	70	45	65	128	81	39	78	55	39	78	55
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4
Profile							-				-						-	
Riffle length (ft)					attern of				===			===			===	5	26	11
Riffle slope (ft/ft)					l pools d		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	0.22%	0.33%	0.28%	0.00%	1.59%	0.22%
Pool length (ft)				straigi	ntening a	activities			===			===			===	7	21	13
Pool spacing (ft)							22	62	39	29	103	60	20	52	26	20	52	26
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters					-	-	-	-	-	-	-				-	-		
Valley Length (ft)						===			===			===			===			
Channel Length (ft)						===			===			===			===			743
Sinuosity						1.01			1.4			1.4			1.2			1.2
Water Surface Slope (ft/ft)						0.40%			0.28%			1.27%			0.11%			0.12%
BF slope (ft/ft)						====			===			====			===			===
Rosgen Classification						Fc 5/6			E 4/5			E 4/5			Ec4/5			C 4/5

*UT to Catawba River Reference Site includes measurements from a stream measured in 2008.

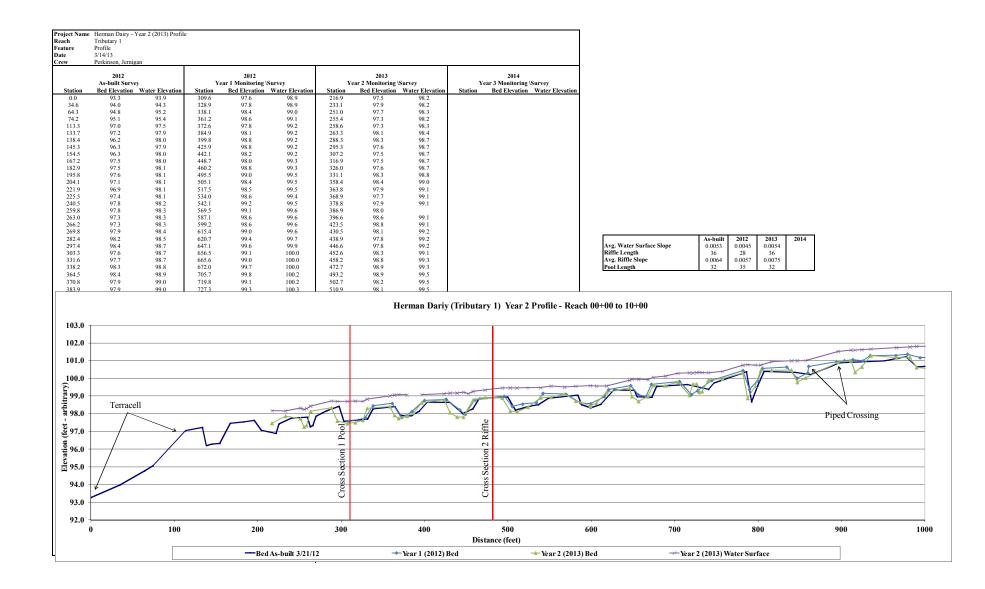
Table 11A. Morphology and Hydraulic Monitoring SummaryHerman Dairy - Stream and Wetland Restoration Site

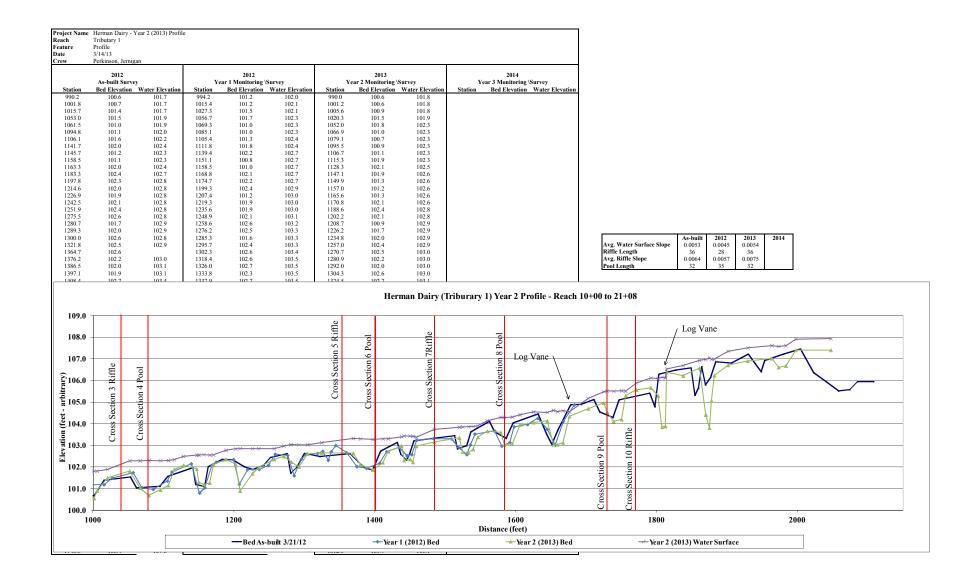
Parameter		Cross	Section	1 Pool	(UT 1)		(Cross Se	ection 2	Pool (UT 1)		С	ross Se	ection	3 Riff	le (UT	1)	Cross Section 4 Pool (UT 1)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	20.9	19.6	18.1				16.9	17.1	17.4				16.4	17	18.9				16.8	18.2	20.2			
Floodprone Width (ft)													250	250	250									
BF Cross Sectional Area (ft2)	19.9	18.9	17.4				16.3	16	14.9				16.7	17	17.5				14.4	14.5	13.8			
BF Mean Depth (ft)	1.0	1.0	1.0				1.0	0.9	0.9				1.0	1.0	0.9				0.9	0.8	0.7			
BF Max Depth (ft)	2.3	2.2	2.1				1.4	1.5	1.4				1.4	1.4	1.4				2.1	2.1	2.3			
Width/Depth Ratio													16.1	17	20.4						-			
Entrenchment Ratio													15.2	14.7	13.2									
Bank Height Ratio													1	1	1									
Wetted Perimeter (ft)	21.7	20.4	18.8				17.2	17.4	17.8				16.8	17.6	19.5				17.6	19.1	21.2			
Hydraulic Radius (ft)	0.9	0.9	0.9				0.9	0.9	0.8				1	1	0.9				0.8	0.8	0.6			
Substrate																								
d50 (mm)									0.4						0.2									
d84 (mm)									15						10									
Parameter	MY	-00 (20	12)	Μ	Y-01 (20	012)	M	Y-02 (20	13)	MY	-03 (2	014)	MY	-04 (2	015)	MY	-05 (2	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	1					
Pattern																			1					
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67															
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50															
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67															
Meander Width Ratio	3	6	4	3	6	4	3	6	4															
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33															
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%															
Pool Length (ft)	10	54	32	18	62	35	12	63	31															
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67															
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525											1					
Channel Length (ft)		2,108			1,648			1830											1					
Sinuosity		1.2			1.2			1.2											1					
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054]					
BF Slope (ft/ft)]					
Rosgen Classification		C/E 4/5			C-4/5			C 4/5]					

Table 11B. Morphology and Hydraulic Monitoring SummaryHerman Dairy - Stream and Wetland Restoration Site

Parameter		Cross S	ection 5		(UT 1)		(Cross Se	ection 6	Pool (UT 1)		C	ross Se	ection	7 Riff	le (UT	1)	C	ross S	ection	8 Poo	l (UT	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	16.1	16.3	16.7				20	17.2	19.5				15.5	14.6	16.8				16.1	18.4	18.7			
Floodprone Width (ft)	250	250	250										250	250	250									
BF Cross Sectional Area (ft2)	18.2	16.6	15.2				20.3	17.7	15				14	14	14.5				15.5	16	16			
BF Mean Depth (ft)	1.1	1.0	0.9				1.0	1.0	0.8				0.9	1.0	0.9				1.0	0.9	0.9			
BF Max Depth (ft)	1.6	1.4	1.5				2.3	2.2	2.2				1.2	1.4	1.5				1.9	2.1	2.3			
Width/Depth Ratio	14.2	16.0	18.3										17.2	15.2	19.5									
Entrenchment Ratio	15.5	15.3	15.0										16.1	17.1	14.9									
Bank Height Ratio	1	1	1										1	1	1									
Wetted Perimeter (ft)	16.8	16.9	17.2				21	18.3	20.5				15.9	15.1	17.3				16.8	19.1	19.6			
Hydraulic Radius (ft)	1.1	1	0.9				1	1	0.7				0.9	0.9	0.8				0.9	0.8	0.8			
Substrate																								
d50 (mm)																								
d84 (mm)																								
Parameter	MY	-00 (20	12)	MY	7-01 (20	012)	M	Y-02 (20	013)	MY	-03 (2	014)	MY	-04 (2	015)	MY	-05 (2	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67															
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50															
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67															
Meander Width Ratio	3	6	4	3	6	4	3	6	4															
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33															
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%															
Pool Length (ft)	10	54	32	18	62	35	12	63	31															
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67															
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525																
Channel Length (ft)		2,108			1,648			1830																
Sinuosity		1.2			1.2			1.2]					
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054]					
BF Slope (ft/ft)																			1					
Rosgen Classification		C/E 4/5			C-4/5			C 4/5			-			-			-							

Table 11C. Morphology and Hydraulic Monitoring SummaryHerman Dairy - Stream and Wetland Restoration Site


Parameter		Cross Section 9 Pool (UT 1)						Cross Section 10 Riffle (UT 1)					Cross Section 11 Riffle (UT2)						Cross Section 12 Pool (UT2)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	18.7	16.2	16.6				16	17	15.5				7.9	5.2	5.8				5.5	5.8	5.3			
Floodprone Width (ft)							250	250	250				150	150	150									
BF Cross Sectional Area (ft2)	15.7	15.4	16				16	15.6	13.2				2.3	1.3	1.4				2.3	2.1	2			
BF Mean Depth (ft)	0.8	1.0	1.0				1.0	0.9	0.9				0.3	0.3	0.2				0.4	0.4	0.4			
BF Max Depth (ft)	2	2.3	2.4				1.3	1.4	1.3				0.5	0.4	0.4				0.8	0.7	0.7			
Width/Depth Ratio							16.0	18.5	18.2				27.1	20.8	24.0									
Entrenchment Ratio							15.6	14.7	16.1				19.0	28.8	25.9									
Bank Height Ratio							1	1	1				1	1	1									
Wetted Perimeter (ft)	19.5	17	17.8				16.5	17.6	15.9				8	5.3	5.9				5.8	6	5.5			
Hydraulic Radius (ft)	0.8	0.9	0.9				1	0.9	0.8				0.3	0.2	0.2				0.4	0.3	0.4			
Substrate																								
d50 (mm)									9.8															
d84 (mm)									21															
Parameter	MY	-00 (20	12)	MY	7-01 (20)12)	M	Y-02 (20)13)	MY	-03 (2	(014)	MY	-04 (2	015)	MY	-05 (2	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	1					
Pattern																			1					
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67															
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50															
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67															
Meander Width Ratio	3	6	4	3	6	4	3	6	4															
Profile																								
Riffle Length (ft)	17	111	51	16	49	28	5	82	33															
Riffle Slope (ft/ft)	0.43%	4.80%	1.54%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%															
Pool Length (ft)	26	78	46	18	62	35	12	63	31															
Pool Spacing (ft)	76	176	126	50	134	67	50	134	67															
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525																
Channel Length (ft)		2,108			1,648			1830																
Sinuosity		1.2			1.2			1.2																
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054]					
BF Slope (ft/ft)]					
Rosgen Classification		C/E 4/5			C-4/5			C 4/5]					


Table 11D. Morphology and Hydraulic Monitoring SummaryHerman Dairy - Stream and Wetland Restoration Site

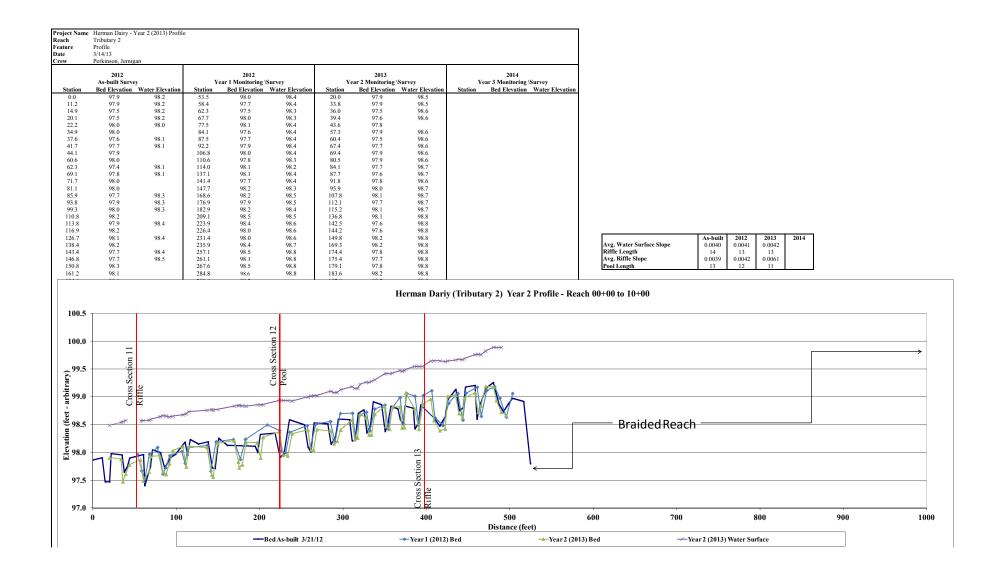
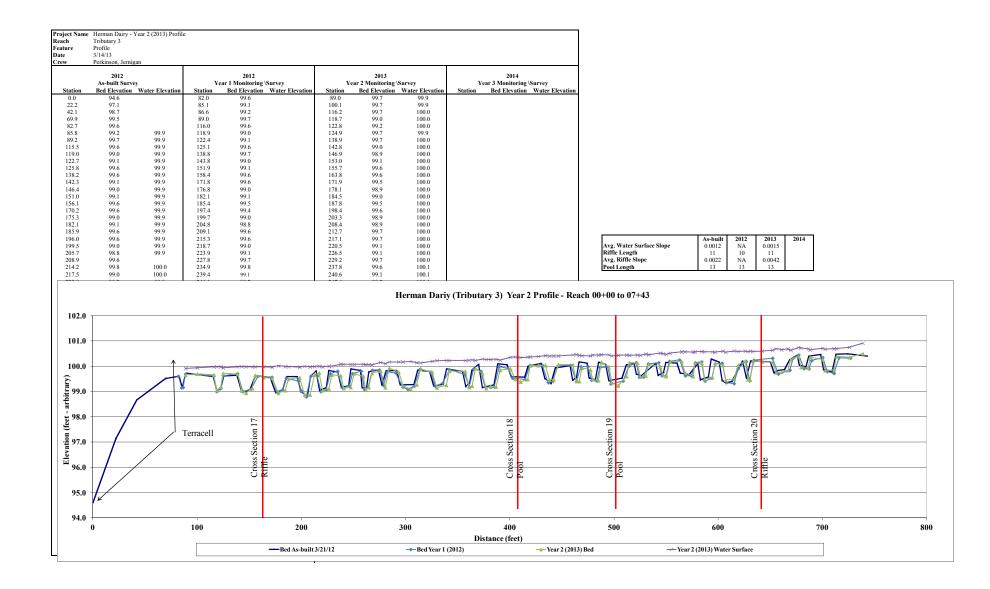
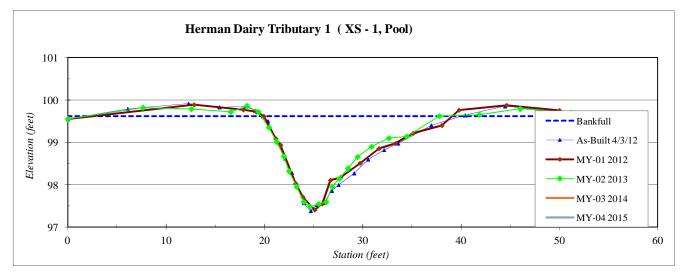

Parameter	(Cross Se	ction 13	Riffle	(UT 2)		Cross Section 14 Pool (UT 2)						Cross Section 15 Riffle (UT2)						Cross Section 16 Pool (UT2)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7	6.3				6.6	6.8	6				6.8	6.9	6.9				5.7	7.1	5.6			
Floodprone Width (ft)	150	150	150										150	150	150									
BF Cross Sectional Area (ft2)	2.4	1.5	1.7				2.4	2.6	2.5				2.2	2.2	2.2				2.3	2.4	2.1			
BF Mean Depth (ft)	0.3	0.2	0.3				0.4	0.4	0.4				0.3	0.3	0.3				0.4	0.3	0.4			
BF Max Depth (ft)	0.5	0.5	0.5				0.7	0.7	0.8				0.5	0.5	0.5				0.8	0.8	0.9			
Width/Depth Ratio	19.8	32.7	23.3										21.0	21.6	21.6									
Entrenchment Ratio	21.7	21.4	23.8										22.1	21.7	21.7									
Bank Height Ratio	1	1	1										1	1	1									
Wetted Perimeter (ft)	7.1	7.2	6.5				6.8	7	6.3				7	7.1	7.1				6	7.3	6			
Hydraulic Radius (ft)	0.3	0.2	0.3				0.3	0.4	0.4				0.3	0.3	0.3				0.4	0.3	0.3			
Substrate																								
d50 (mm)			24.6												24.2									
d84 (mm)			40												45									
Parameter	MY	MY-00 (2012)		MY-01 (2012)		M	Y-02 (20)13)	MY	-03 (2	014)	MY	-04 (2	015)	MY	016)								
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	1					
Pattern																			1					
Channel Beltwidth (ft)	17	34	23	17	34	23	17	34	23															
Radius of Curvature (ft)	11	57	17	11	57	17	11	57	17															
Meander Wavelength (ft)	34	68	49	34	68	49	34	68	49															
Meander Width Ratio	3	6	4	3	6	4	3	6	4															
Profile																								
Riffle Length (ft)	6	44	14	6	41	11	6	28	12															
Riffle Slope (ft/ft)	0.00%	1.25%	0.39%	0	3.39	0.42	0.00%	3.33%	0.42%															
Pool Length (ft)	6	32	13	7	21	11	6	21	11															
Pool Spacing (ft)	17	46	23	17	46	23	17	46	23															
Additonal Reach Parameters																								
Valley Length (ft)		1413			1522			1298											1					
Channel Length (ft)		1,696			1,827			1557											1					
Sinuosity		1.2			1.2			1.2											1					
Water Surface Slope (ft/ft)		0.004			0.0041			0.0042											1					
BF Slope (ft/ft)																			1					
Rosgen Classification		C/E 4/5			C 4/5			C 4/5											1					

Table 11E.Morphology and Hydraulic Monitoring SummaryHerman Dairy -Stream and Wetland Restoration Site

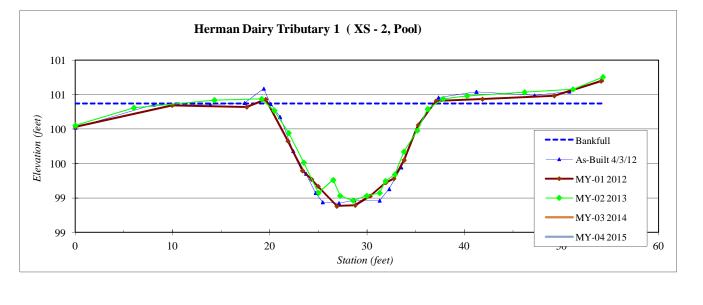

Parameter	(Cross Se	ection 17	Riffle	(UT 3)		Cross Section 18 Pool (UT 3)						C	ross S	Cross Section 19 Pool (UT3)						Cross Section 20 Riffle (UT3)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5		
BF Width (ft)	8.5	7.7	7.7				6.2	6.2	6.5				6.8	6.5	6.4				9.5	7.8	7.5					
Floodprone Width (ft)	150	150	150																150	150	150					
BF Cross Sectional Area (ft2)	3.1	2.6	2.7				3.8	3.7	3.6				3	3	2.9				3.2	2.3	2.6					
BF Mean Depth (ft)	0.4	0.3	0.4				0.6	0.6	0.6				0.4	0.5	0.5				0.3	0.3	0.3					
BF Max Depth (ft)	0.5	0.5	0.5				1	1.1	1				0.9	1	0.9				0.6	0.4	0.5					
Width/Depth Ratio	23.3	22.8	22.0																28.2	26.5	21.6					
Entrenchment Ratio	17.6	19.5	19.5																15.8	19.2	20.0					
Bank Height Ratio	1	1	1																1	1	1					
Wetted Perimeter (ft)	8.7	7.8	7.8				6.7	6.6	6.9				7.2	6.9	6.7				9.7	7.9	7.7					
Hydraulic Radius (ft)	0.4	0.3	0.3				0.6	0.6	0.5				0.4	0.4	0.4				0.3	0.3	0.3			1		
Substrate																										
d50 (mm)			28.2																							
d84 (mm)			43																					1		
Parameter	MY	MY-00 (2012)		MY	7-01 (20	012)	M	Y-02 (20	13)	MY	-03 (2	014)	MY	-04 (2	015)	MY	-05 (2	016)								
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	1							
Pattern																			1							
Channel Beltwidth (ft)	20	39	26	20	39	26	20	39	26										1							
Radius of Curvature (ft)	13	65	20	13	65	20	13	65	20																	
Meander Wavelength (ft)	39	78	55	39	78	55	39	78	55										1							
Meander Width Ratio	3	6	4	3	6	4	3	6	4										1							
Profile																										
Riffle Length (ft)	5	26	11	5	27	9	4	27	10										1							
Riffle Slope (ft/ft)	0.00%	1.59%	0.22%				0.00%	1.43%	0.28%																	
Pool Length (ft)	8	21	13	7	24	13	7	21	13										1							
Pool Spacing (ft)	20	52	26	20	52	26	20	52	26																	
Additonal Reach Parameters																			1							
Valley Length (ft)		619			645			616											1							
Channel Length (ft)		743			774			739											1							
Sinuosity		1.2			1.2			1.2]							
Water Surface Slope (ft/ft)		0.0012						0.0015											1							
BF Slope (ft/ft)																			1							
Rosgen Classification	1	C/E 4/5			C 4/5			C 4/5											1							

Reach Feature	Herman Dairy - Y Tributary 2 Profile 3/14/13 Perkinson, Jernig	(ear 2 (2013) Profile											
Station	2012 As-built Surve Bed Elevation	Water Elevation	Station		Water Elevation	Station		\Survey Water Elevation	2014 Year 3 Monitoring \Survey Station Bed Elevation Water				
524.8 1041.2 1041.8 1043.5 1060.7 1071.8 1074.4 1095.6 1098.7 1110.0 1116.6 1122.1 1128.3 1137.3 1139.8 1146.0 1147.4 1156.8 1169.6 1147.4 1156.8 1169.6 1191.8 1195.0 1191.8 1195.0 1201.3 1205.2 1220.4 1225.1 1230.0	100.2 101.2 101.5 101.4 101.3 101.0 101.2 101.7 102.2 101.6 102.3 102.0 102.0 103.1 102.8 102.4 102.5 102.9 102.9 102.4 102.6 103.0 103.1 102.8 103.3	99.4 100.8 101.2 101.5 101.5 101.7 101.6 101.7 101.6 102.3 102.3 102.3 102.6 102.6 102.6 103.1 103.1 103.1 103.2 105.2 105.2 105.2 105.3 103.3 103.3	503.3 1041.2 1064.1 1072.4 1078.9 1096.1 1099.7 1109.0 1109.7 1115.0 1120.4 1125.5 1134.2 1137.5 1134.2 1137.5 1134.2 1137.5 1134.2 1137.5 1135.3 1165.4 1170.1 1188.5 1198.5 1198.5 1298.5 1292.8 1217.5 1222.8 1226.2 1236.2	99.1 101.5 101.3 101.1 101.2 101.3 101.1 102.0 101.6 102.0 101.8 102.4 102.4 102.4 102.4 102.4 102.2 102.4 102.5 102.4 102.5 102.8 102.5 102.6 103.0 103.0 103.0 103.0 103.1 103.1 103.1	99.6 101.5 101.6 101.7 101.7 101.7 101.7 101.9 102.4 102.4 102.4 102.4 102.8 103.1 103.1 103.1 103.1 103.2 103.2 103.3 103.3 103.3 103.4 103.4 103.5	495.4 1041.2 1055.1 1068.9 1071.4 1076.6 1090.3 1093.7 1096.8 1109.1 1114.1 1126.1 1137.5 1145.7 111	98.7 101.4 101.2 101.3 101.0 101.1 101.3 101.1 101.3 101.1 101.7 102.0 101.6 101.6 101.7 102.2 102.4 101.9 101.7 103.0 102.5 102.9 103.0 102.5	101.8 102.0 102.0 102.0 102.0 102.0 102.0 102.2 102.6 102.6 102.6 102.6 102.6 102.6 102.6 102.7 103.0 103.0 103.3 103.4 103.4 103.4 103.4 103.5 103.5		Avg. Wate Riffie Len Avg. Riffie Pool Leng	Slope 0.0039	2012 2013 2014 0.0041 0.0042 13 13 13 0.0041 12 11 11	
							Не	rman Dairy	(Triburary 2) Year 2	Profile - Reach 10-	+00 to 16+96		
106.0 -			Log Vane		I	.og Vane`							
105.0 - 104.0 - Îti 103.0 - 102.0 -	Log Sill					***				× *** ********************************			
- 0.201 ⁻ - 0.001 (feet - Elsvation Elsvation - 0.0016v				V Y	Pool			Cross Section 15 Riffle			Pool		
99.0 - 98.0 - 10		aided Reach	1100			1200) 1	400	1500	1600	
				-Bed A	As-built 3/21		→ Yea	ar 1 (2012) Be	Distance (feet)		≁Year 2 (2013) Wate		1700


Site Name:	Herman Dairy	
Watershed:	30501001120030	
XS ID	Tributary 1 (XS - 1, Pool)	
Drainage Area (sq mi):	1.01	
Date:	3/14/2013	
Field Crew:	Perkinson, Jernigan	

Station	Elevation	
0.00	99.55	
7.64	99.82	
12.56	99.79	
16.56	99.72	
18.23	99.86	
19.38	99.72	
20.46	99.35	
21.22	99.01	
21.97	98.67	
22.49	98.32	
23.27	97.95	
24.00	97.60	
24.62	97.48	
25.50	97.54	
26.28	97.60	
26.88	97.95	
27.6	98.14	
28.51	98.39	
29.46	98.65	
30.87	98.90	
32.65	99.10	
34.46	99.14	
37.8	99.62	
41.9	99.7	
46.0	99.8	
51.2	99.7	

SUMMARY DATA	
Bankfull Elevation:	99.6
Bankfull Cross-Sectional Area:	17.4
Bankfull Width:	18.1
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.0
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-


Stream Type E

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 2, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	14.9
Bankfull Width:	17.4
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Date:	
Field Crew:	
Station	Elevation
0.00	100.05
6.02	100.31
14.30	100.42
19.14	100.44
20.47	100.27
21.93	99.94
23.48	99.51
25.00	99.07
26.53	99.26
27.23	99.03
28.55	98.96
29.96	99.03
31.30	99.07
31.88	99.25
32.87	99.34
33.8	99.67
35.2	99.98
36.2	100.29
37.84	100.44
40.29	100.48
46.21	100.53
51.19	100.58
54.26	100.75

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 3, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	102.8
Bankfull Cross-Sectional Area:	17.5
Bankfull Width:	18.9
Flood Prone Area Elevation:	104.2
Flood Prone Width:	>80
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	20.4
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Herman Dairy Tributary 1 (XS - 3, Riffle) 105 104 Elevation (feet) 103 ---Bankfull Flood Prone Area MY-01 2012 102 • MY-02 2013 MY-03 2014 MY-04 2015 101 10 20 30 Station (feet) 40 0 50 60

Field Crew:	
Station	Elevation
-1.10	103.30
5.72	103.09
11.56	102.92
14.55	102.86
16.52	102.87
17.48	102.74
19.03	102.24
21.92	101.66
23.20	101.97
24.56	101.41
26.15	101.82
26.93	101.75
27.96	101.55
29.66	101.52
31.3	101.40
32.5	101.57
33.5	101.99
34.7	102.40
36.5	102.98
39.2	103.13
43.9	102.92
48.2	102.83
52.0	103.04
54.8	102.86

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 4, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Elevation

103.1 103.0

102.9

102.8

102.6

102.3

102.0 101.6

101.5

100.9

100.7

100.8

101.5

102.0

102.78

103.13

103.08

103.10

103.12

103.03

Station

0.0

6.6 11.4

14.4

16.8

18.2

19.4

20.7

21.8

22.7

23.1

23.6

24.4

25.7

26.9

28.1 31.0

35.5

40.4

44.5

SUMMARY DATA	
Bankfull Elevation:	103.0
Bankfull Cross-Sectional Area:	13.8
Bankfull Width:	20.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Herman Dairy Tributary 1 (XS - 4, Pool) 104 103 Elevation (feet) ---Bankfull ---- Flood Prone Area 102 As-Built 4/3/12 MY-01 2012 • MY-02 2013 101 - MY-03 2014 - MY-04 2015 100 10 15 20 25 30 35 40 45 0 5 50 Station (feet)

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 5, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Elevation

104.0 104.2

104.3

104.5

103.8

103.5

103.2

102.9

102.6

102.8

102.9

102.8

103.2 103.44

103.31

103.56

104.10

104.24

104.11

104.19

104.25

104.37

Station 0.0

8.8 15.3

20.4

21.9

22.8

23.7

24.6

25.7

27.1

28.7

31.5

32.5

33.5

34.7

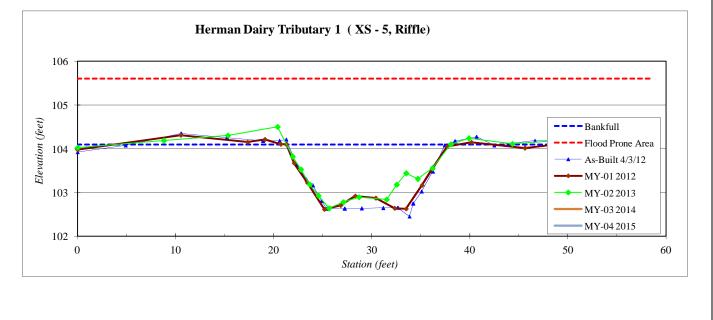
36.2

38.1

39.9

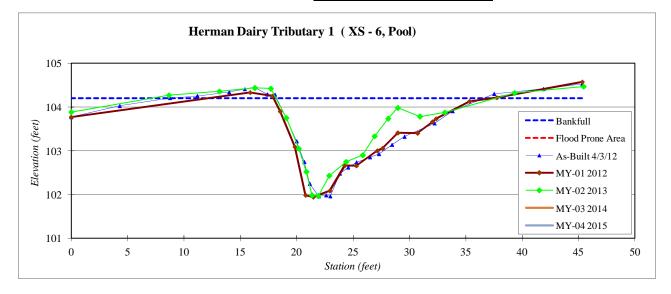
44.3

49.6


54.6

58.6

SUMMARY DATA	
Bankfull Elevation:	104.1
Bankfull Cross-Sectional Area:	15.2
Bankfull Width:	16.7
Flood Prone Area Elevation:	105.6
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	18.3
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0


Stream Type E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 6, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	104.2
Bankfull Cross-Sectional Area:	15.0
Bankfull Width:	19.5
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	0.8
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Station	Elevation
0.0	103.9
8.7	104.3
13.1	104.4
16.3	104.4
17.7	104.4
19.1	103.8
20.2	103.0
20.9	102.5
21.4	102.0
21.9	102.0
22.9	102.4
24.4	102.7
25.8	102.9
26.9	103.3
28.1	103.7
29.0	104.0
30.9	103.8
33.1	103.9
39.3	104.3
45.4	104.5

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 7, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation	
-0.5	105.0	
8.7	104.8	
14.9	104.9	
18.1	105.0	
19.9	104.8	
21.3	104.7	
22.3	104.0	
23.4	103.5	
25.2	103.3	
26.6	103.3	
28.4	103.3	
29.9	103.7	
31.6	103.9	
33.1	104.07	
35.0	104.61	
37.2	104.81	
42.7	105.08	
47.8	105.27	
54.0	105.36	

SUMMARY DATA	
Bankfull Elevation:	104.8
Bankfull Cross-Sectional Area:	14.5
Bankfull Width:	16.8
Flood Prone Area Elevation:	106.3
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	19.5
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

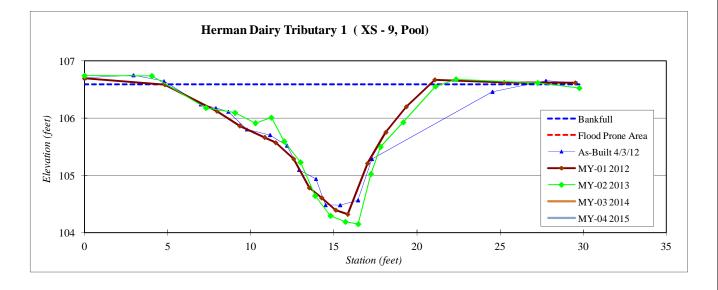
Herman Dairy Tributary 1 (XS - 7, Riffle) 107 106 Elevation (feet) 201 ----Bankfull Flood Prone Area As-Built 4/3/12 - MY-01 2012 - MY-02 2013 104 - MY-03 2014 MY-04 2015 103 20 30 40 10 50 0 60 Station (feet)

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 8, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Bankfull Elevation:	105.4
Bankfull Cross-Sectional Area:	16.0
Bankfull Width:	18.7
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Herman Dairy Tributary 1 (XS - 8, Pool) 107 106 Elevation (feet) 105 ---Bankfull --- Flood Prone Area As-Built 4/3/12 - MY-01 2012 → MY-02 2013 103 MY-03 2014 - MY-04 2015 102 15 20 25 0 5 10 30 35 40 45 50 Station (feet)

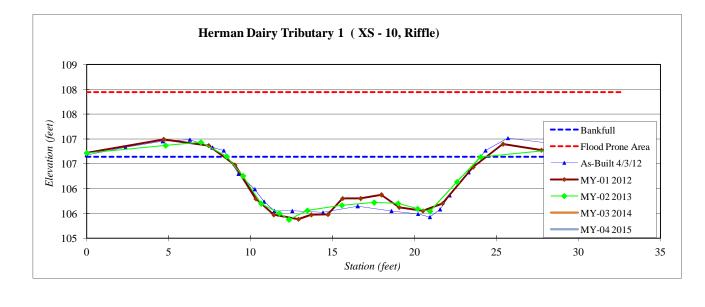
Field Crew:	
a	
Station	Elevation
0.0	105.5
7.7	105.4
11.1	105.2
13.3	105.1
14.4	105.2
15.8	104.9
17.4	104.4
18.7	104.1
19.5	103.9
20.5	103.3
20.9	103.1
21.5	103.1
22.2	103.3
22.8	103.52
23.6	103.79
24.6	104.49
25.4	104.86
26.8	105.42
29.1	105.51
33.6	105.73
39.1	105.95
43.2	105.94


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 9, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	106.7
4.0	106.7
7.3	106.2
9.1	106.1
10.3	105.9
11.2	106.0
12.0	105.6
13.0	105.2
13.9	104.6
14.8	104.3
15.7	104.2
16.5	104.1
17.2	105.0
17.8	105.50
19.2	105.93
21.1	106.55
22.3	106.68
27.3	106.62
29.8	106.52

SUMMARY DATA	
Bankfull Elevation:	106.6
Bankfull Cross-Sectional Area:	16.0
Bankfull Width:	16.6
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.4
Mean Depth at Bankfull:	1.0
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 10, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	106.6
Bankfull Cross-Sectional Area:	13.2
Bankfull Width:	15.5
Flood Prone Area Elevation:	107.9
Flood Prone Width:	>80
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	18.2
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type

Station	Elevation
0.0	106.7
4.8	106.9
7.0	106.9
8.5	106.7
9.5	106.3
10.6	105.7
11.8	105.5
12.3	105.4
13.5	105.6
15.6	105.7
17.5	105.7
19.0	105.7
20.2	105.6
20.9	105.54
22.6	106.13
24.0	106.64
32.6	106.91

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 11, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station

0.0

3.9 5.6

7.3

8.3

9.3

10.1

11.4

12.9

15.7

19.1

Elevation 98.6

98.3

98.3

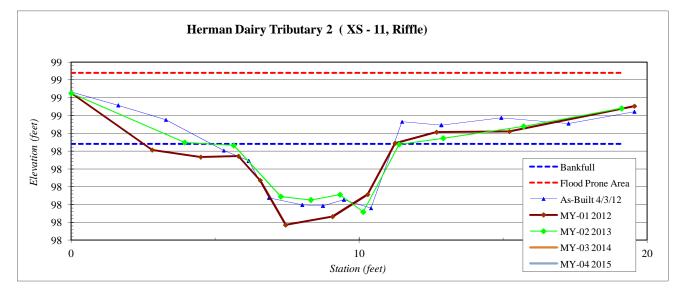
98.0

98.0

98.1

98.0

98.3


98.4

98.4

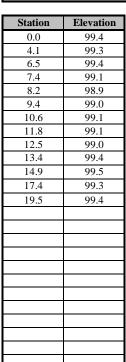
98.5

SUMMARY DATA	
Bankfull Elevation:	98.3
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	5.8
Flood Prone Area Elevation:	98.7
Flood Prone Width:	>80
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	24.0
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 12, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.0	98.9	
4.0	98.7	
6.2	98.8	
7.5	98.9	
8.2	98.7	
9.3	98.2	
10.2	98.0	
10.9	98.1	
11.4	98.2	
11.9	98.4	
13.0	98.6	
14.4	98.9	
16.5	99.0	
19.4	98.96	

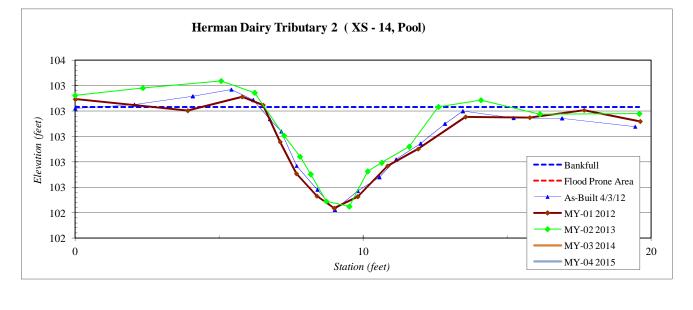
SUMMARY DATA	
Bankfull Elevation:	98.7
Bankfull Cross-Sectional Area:	2.0
Bankfull Width:	5.3
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-


Herman Dairy Tributary 2 (XS - 12, Pool) 99 99 99 Elevation (feet) 99 98 ----Bankfull ---- Flood Prone Area 98 As-Built 4/3/12 MY-01 2012 98 → MY-02 2013 98 - MY-03 2014 10 20 0 - MY-04 2015 Station (feet)

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 13, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Bankfull Elevation:	99.3
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	6.3
Flood Prone Area Elevation:	99.8
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	23.3
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Herman Dairy Tributary 2 (XS - 13, Riffle) 100 100 100 Elevation (feet) 99 99 ----Bankfull ---- Flood Prone Area 99 As-Built 4/3/12 99 • MY-01 2012 → MY-02 2013 99 **-** MY-03 2014 10 20 0 MY-04 2015 Station (feet)


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 14, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.0	103.3	
2.3	103.4	
5.1	103.4	
6.2	103.3	
7.3	103.0	
7.8	102.8	
8.2	102.7	
8.7	102.5	
9.5	102.4	
10.2	102.7	
10.6	102.8	
11.6	102.9	
12.6	103.2	
14.1	103.28	
16.1	103.18	
19.6	103.18	

Bankfull Elevation:	103.2
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	6.0
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

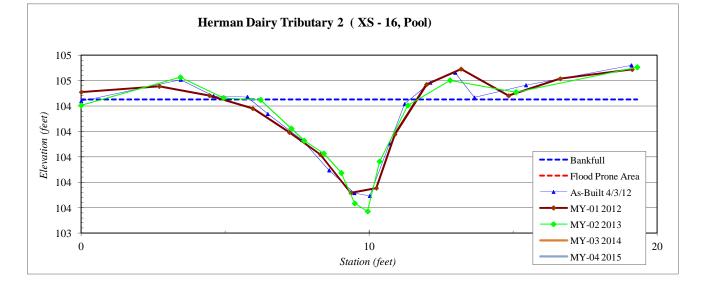
Stream Type E/C

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 15, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.2
3.6	104.2
5.8	104.2
6.7	104.0
7.2	103.7
8.3	103.7
9.4	103.6
11.2	103.9
11.8	103.8
12.4	104.0
13.6	104.2
15.1	104.1
16.9	104.2
19.4	104.20

SUMMARY DATA	
Bankfull Elevation:	104.1
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	6.9
Flood Prone Area Elevation:	104.6
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Stream Type E/C Herman Dairy Tributary 2 (XS - 15, Riffle) 105 105 104 104 Elevation (feet) 104 104 ----Bankfull ---- Flood Prone Area 104 As-Built 4/3/12 MY-01 2012 104 → MY-02 2013 103 **-** MY-03 2014 10 20 0 - MY-04 2015 Station (feet)


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 16, Pool)
Drainage Area (sq mi):	1.01
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.4
3.4	104.6
4.9	104.5
6.2	104.4
7.3	104.2
7.7	104.1
8.4	104.0
9.0	103.9
9.5	103.6
9.9	103.6
10.4	104.0
11.3	104.4
12.8	104.6
15.1	104.51
19.3	104.70

Bankfull Elevation:	104.5
Bankfull Cross-Sectional Area:	2.1
Bankfull Width:	5.6
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

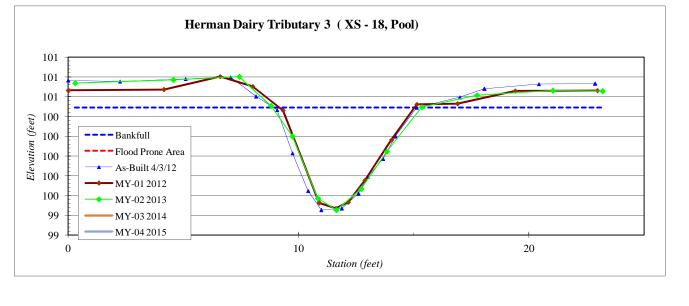
Stream Type

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 17, Riffle)
Drainage Area (sq mi):	0.06
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	100.1
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	7.7
Flood Prone Area Elevation:	100.6
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.0
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Herman Dairy Tributary 3 (XS - 17, Riffle) 101 101 100 Elevation (feet) 001 (feet) 001 (feet) ---Bankfull ---- Flood Prone Area 100 As-Built 4/3/12 MY-01 2012 100 → MY-02 2013 99 - MY-03 2014 5 10 15 20 30 0 MY-04 2015 Station (feet)

Station	Elevation
0.0	100.2
5.1	100.1
8.3	100.2
9.5	100.1
10.5	99.7
12.9	99.7
14.8	99.5
16.3	99.8
17.2	100.1
20.7	100.1
25.3	100.0
28.2	100.1


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 18, Pool)
Drainage Area (sq mi):	0.06
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.3	100.7	
4.6	100.8	
7.4	100.8	
8.8	100.5	
9.7	100.2	
10.8	99.6	
11.6	99.5	
12.7	99.7	
13.8	100.0	
15.4	100.5	
17.7	100.6	
21.0	100.7	
23.2	100.7	

SUMMARY DATA	
Bankfull Elevation:	100.5
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.5
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 19, Pool)
Drainage Area (sq mi):	0.06
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.4
5.8	100.4
8.3	100.5
10.3	100.4
11.0	100.3
11.9	99.9
12.9	99.4
13.4	99.5
14.8	99.9
15.6	100.0
16.4	100.3
17.1	100.3
20.0	100.6
23.0	100.70
25.9	100.80

SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	6.4
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Herman Dairy Tributary 3 (XS - 19, Pool) 101 101 101 Bankfull - Flood Prone Area As-Built 4/3/12 - MY-01 2012 100 - MY-02 2013 99 MY-03 2014 MY-04 2015 99 10 20 0 Station (feet)

64 N	II D
Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 20, Riffle)
Drainage Area (sq mi):	0.06
Date:	3/14/2013
Field Crew:	Perkinson, Jernigan

SUMMARY DATA	
Bankfull Elevation:	100.7
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	7.5
Flood Prone Area Elevation:	101.2
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

Herman Dairy Tributary 3 (XS - 20, Riffle) ----Bankfull ---- Flood Prone Area As-Built 4/3/12 MY-01 2012 → MY-02 2013 - MY-03 2014 MY-04 2015 Station (feet)

G(/*	
Station	Elevation
0.0	100.7
3.5	100.7
5.4	100.7
6.6	100.7
7.5	100.4
8.8	100.4
9.8	100.3
10.9	100.2
12.5	100.2
13.5	100.4
14.2	100.7
16.5	100.8
19.3	100.8

Appendix E. Hydrology Data

Table 12. Wetland Hydrology Criteria Attainment2013 Groundwater Gauge GraphsFigure E1. Annual Climatic Data vs. 30-year Historic Data

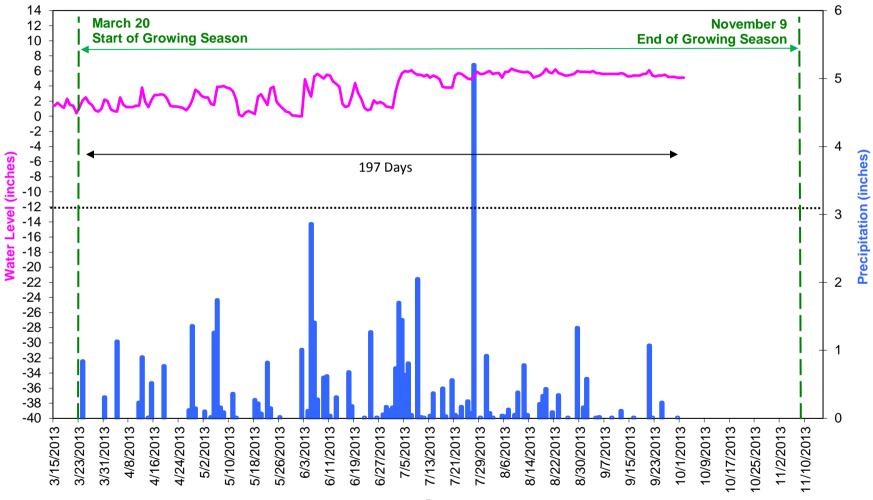
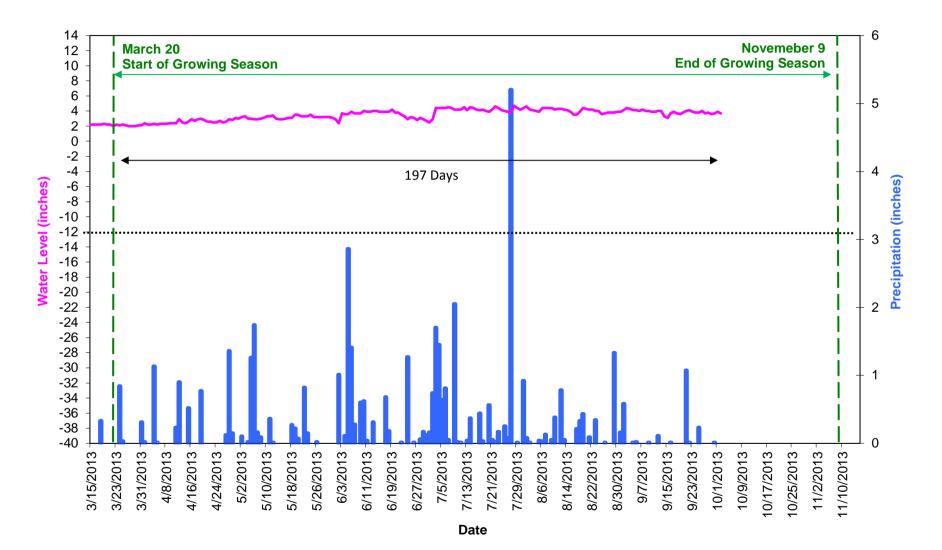
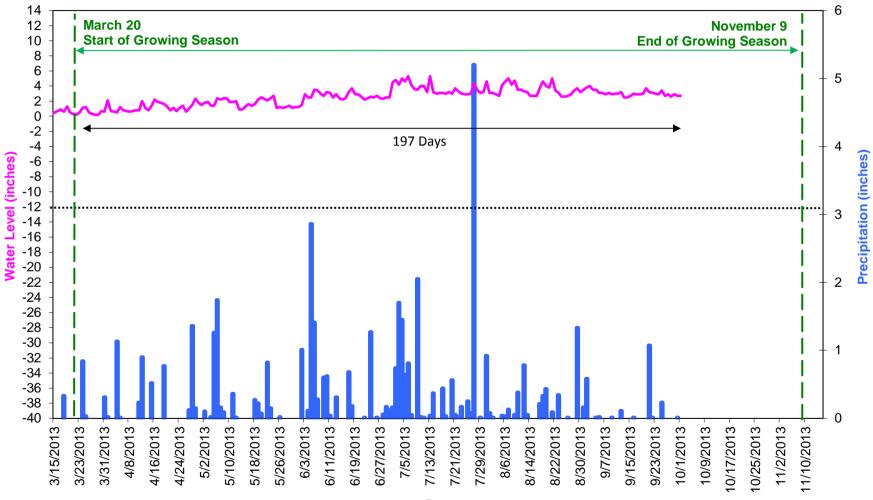

Gauge	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)				
	Year 1 (2012)*	Year 2 (2013)**	Year 3 (2014)	Year 4 (2015)	Year 5 (2016)
1	Yes/38 days	Yes/197 days		· · ·	
	(16.2 percent)	(83.8 percent)			
2	Yes/64 days	Yes/197 days			
	(27.2 percent)	(83.8 percent)			
3	Yes/182 days	Yes/197 days			
	(77.4 percent)	(83.8 percent)			
4	Yes/183 days	Yes/46 days			
	(77.9 percent)	(19.6 percent)			
5	Yes/87 days	Yes/179 days			
	(37.0 percent)	(76.2 percent)			
6	Yes/86 days	Yes/197 days			
	(36.6 percent)	(83.8 percent)			
7	Yes/192 days	Yes/197 days			
	(81.7 percent)	(83.8 percent)			
8	Yes/178 days	Yes/156 days			
	(75.7 percent)	(66.4 percent)			
9	Yes/19 days	Yes/73 days			
	(8.1 percent)	(31.1 percent)			
10	Yes/102 days	Yes/197 days			
	(43.4 percent)	(83.8 percent)			
Ref	Yes/148 days	Yes/197 days			
	(62.9 percent)	(83.8 percent)			

Table 12. Wetland Hydrology Criteria Attainment

*Data has been collected through October 15, 2012 for the Year 1 (2012) monitoring season; data for the remainder of the growing season is available upon request.

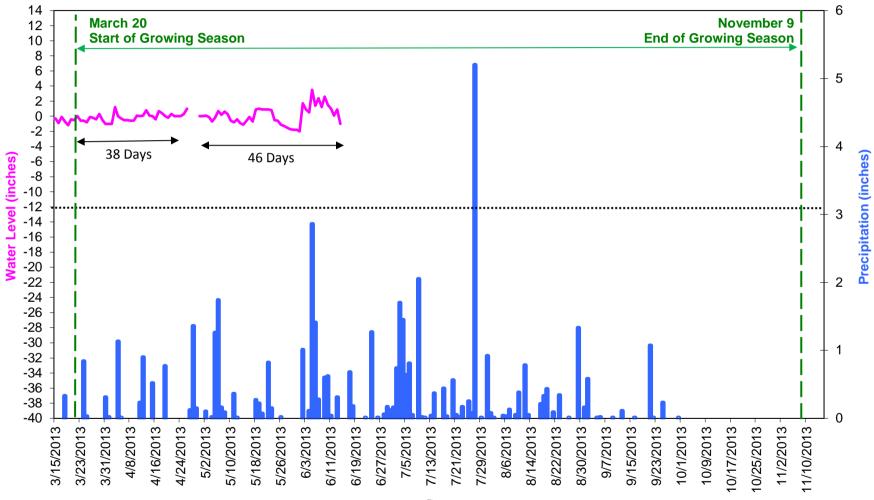

**Data has been collected through October 2, 2013 for the Year 2 (2013) monitoring season; data will continue to be collected for the remainder of the growing season will be available upon request.

Herman Dairy Groundwater Gauge 1 Year 2 (2013 Gauge Data)

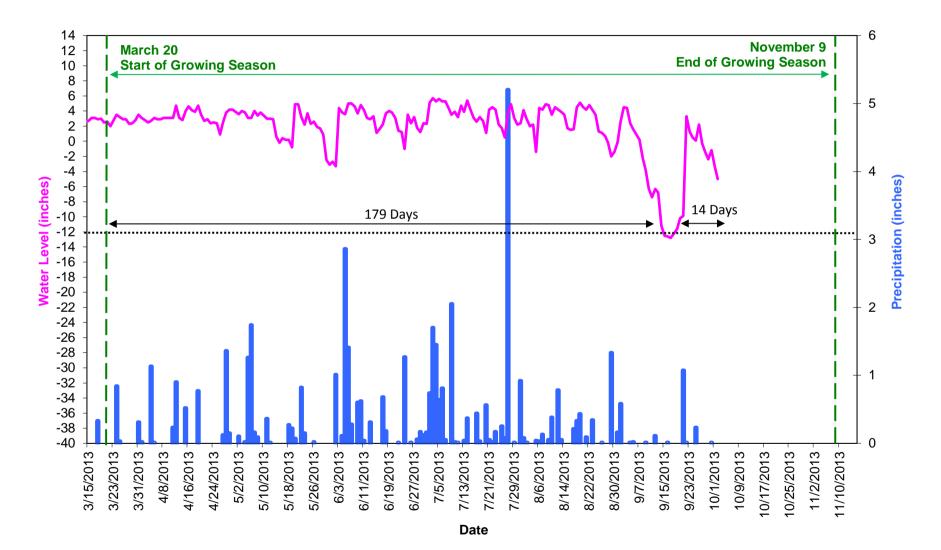


Date

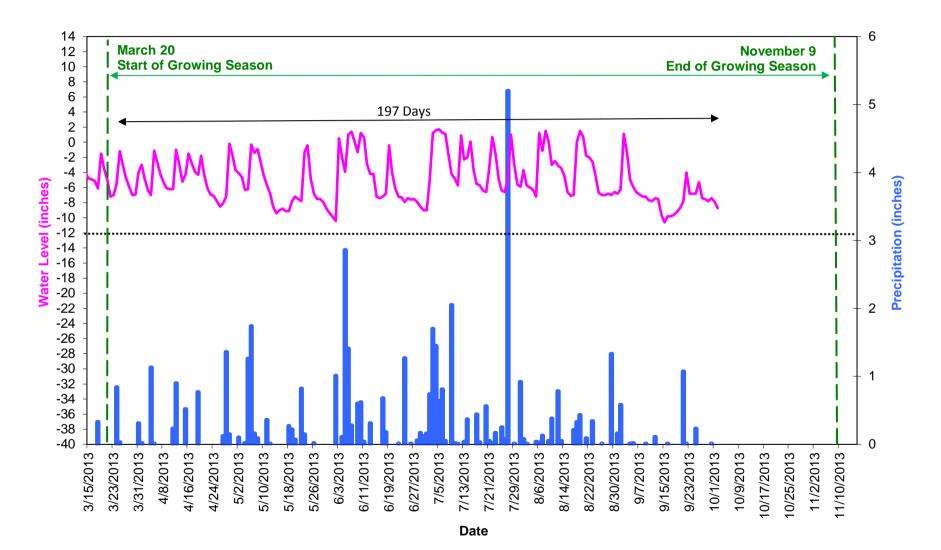
Herman Dairy Groundwater Gauge 2 Year 2 (2013 Gauge Data)



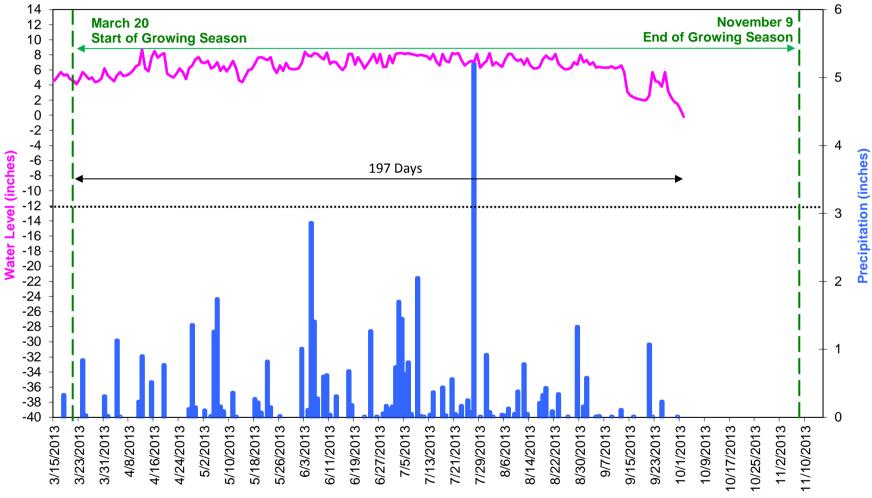
Herman Dairy Groundwater Gauge 3 Year 2 (2013 Gauge Data)

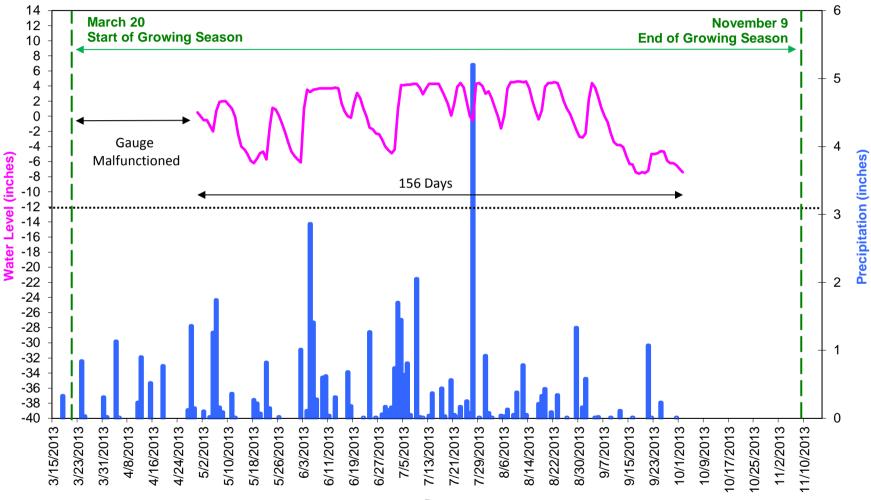

Date

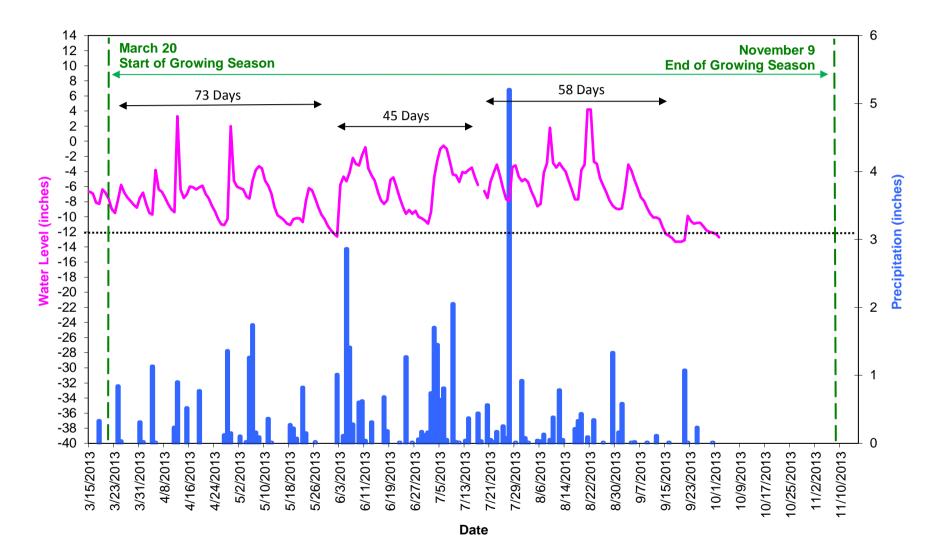
Herman Dairy Groundwater Gauge 4 Year 2 (2013 Gauge Data)

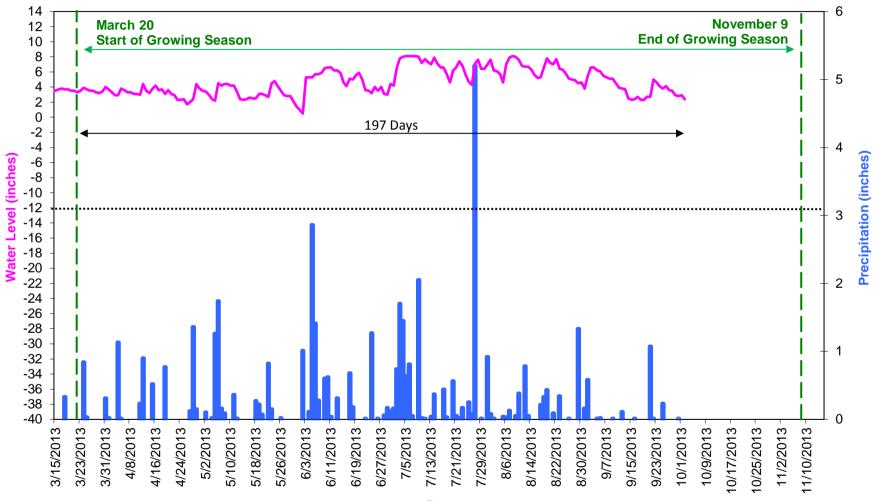


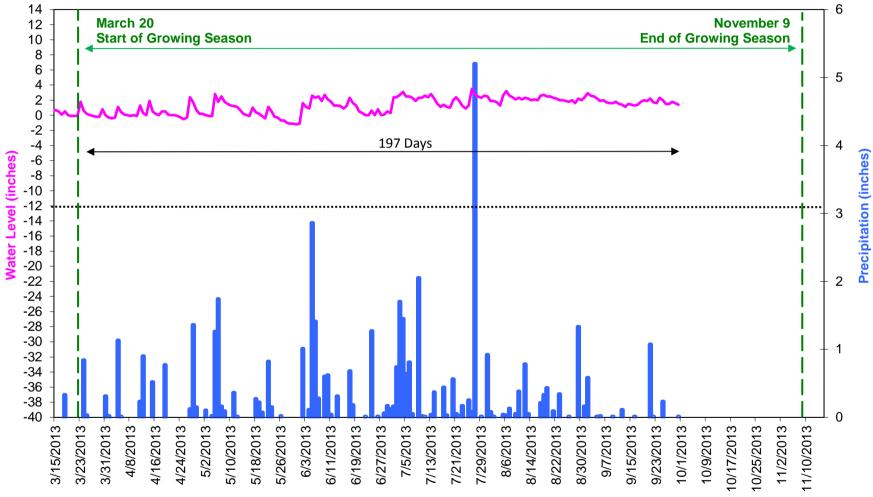
Date

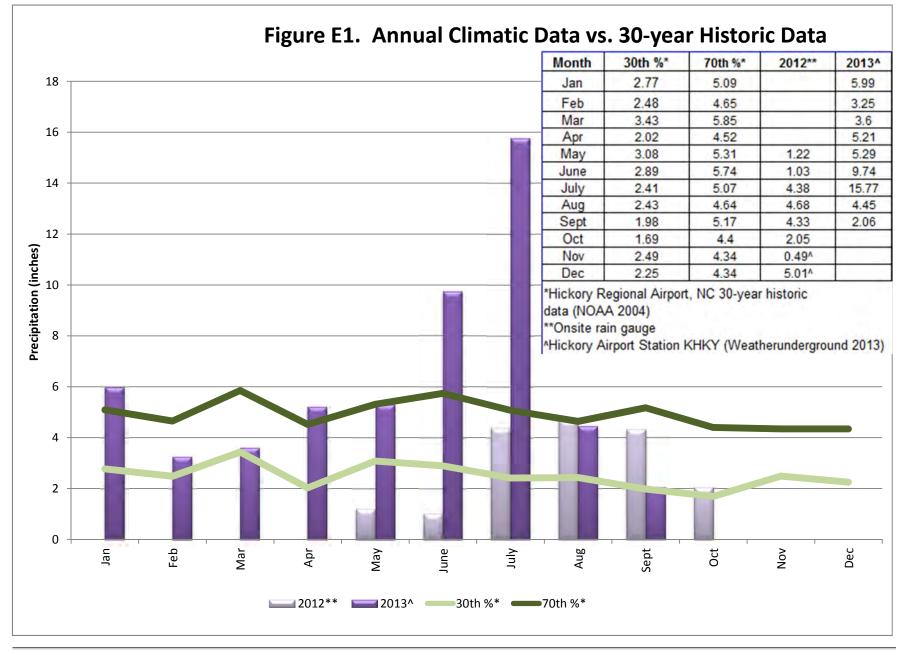

Herman Dairy Groundwater Gauge 5 Year 2 (2013 Gauge Data)


Herman Dairy Groundwater Gauge 6 Year 2 (2013 Gauge Data)


Herman Dairy Groundwater Gauge 7 Year 2 (2012 Gauge Data)


Herman Dairy Groundwater Gauge 8 Year 2 (2013 Gauge Data)


Herman Dairy Groundwater Gauge 9 Year 2 (2013 Gauge Data)



Herman Dairy Groundwater Gauge 10 Year 2 (2013 Gauge Data)

Herman Dairy Groundwater Reference Gauge Year 2 (2013 Gauge Data)

Appendix F. Benthic Data

2013 Benthic Data Lab Results 2013 Habitat Assessment Field Datasheets

BENTHIC MACROINVERTEBRATES, AXIOM ENVIRONMENTAL, 6/17/13.

Herman Dairy Benthics 2013

SPECIES

T.V. F.F.G. Site UT 1 Site UT 2 Site UT 3

PLATYHELMINTHES					
Turbellaria					
Tricladida					
Dugesiidae					
Cura foremanii	5.5				
MOLLUSCA					
Bivalvia					
Gastropoda					
Basommatophora					
Physidae					
Physella sp.	8.7	CG	3	7	
Clitellata					
Oligochaeta		CG			
Tubificida					
Naididae		CG			
Dero sp.	9.8	CG		2	
Tubificidae w.h.c.		CG	2		
Lumbriculida					
Lumbriculidae		CG		4	1
ARTHROPODA					
Arachnoidea					
Acariformes					
Crustacea					
Cladocera					
Daphnidae					
Ceriodaphnia sp.				1	
Ostracoda				1	
Isopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG		4	
Insecta					
Ephemeroptera					
Baetidae		CG			
Callibaetis sp.	9.2	CG		1	
Caenidae		CG			
Caenis sp.	6.8	CG		1	
Odonata					
Coenagrionidae		Р			
Argia sp.	8.3	Р	1		
Libellulidae		Р			
Plathemis lydia	9.8		8		
Hemiptera					
Corixidae		PI	1		

BENTHIC MACROINVERTEBRATES, AXIOM ENVIRONMENTAL, 6/17/13.

SPFCI	FS
JILCI	LJ

PT TAXA CBI assigned values			0 9.05	2 8.62	2 6.34
OTAL NO. OF ORGANISMS DTAL NO. OF TAXA			44 10	42 18	26 9
				42	26
Simulium sp.	4.9	FC			9
Simuliidae		FC			
Anopheles sp.	8.6	FC		3	
Aedes sp.				1	
Culicidae		FC			
Tanypus sp.		Р	6		
Stictochironomus sp.	5.4		1	1	8
Psectrotanypus dyari	10	Р	18	1	
Polypedilum aviceps	3.6				1
Natarsia sp.	9.6	Р			1
Micropsectra sp.	2.4	CG	2		
Conchapelopia sp.	8.4	Р			3
Clinotanypus sp.	7.8	Р			
Chironomus sp.	9.3	CG		1	1
Chironomidae					
Ceratopogonidae		Р		3	
Diptera					
Tropisternus sp.	9.3	Р	2	2	
Enochrus sp.	8.5	CG		1	
Hydrophilidae		P		_	
Laccophilus sp.	9.8	P		, 1	
Dytiscidae		Р		7	
Coleoptera	,	••			-
Hydropsyche betteni gp.	2.3 7.9	FC			1
Diplectrona modesta	2.3	FC			1
Trichoptera Hydropsychidae		FC			

3/06 Revision 6

tlermar Durg UT-1

٦

Habitat Assessment Field Data Sheet **Mountain/ Piedmont Streams**

TOTAL SCORE

Biological Assessment Unit, DWQ	TOTAL SCORE
Directions for use: The observer is to survey a minimum of 100 meters	with 200 meters preferred of stream, preferably in an
upstream direction starting above the bridge pool and the road right-of-w	way. The segment which is assessed should represent
average stream conditions. To perform a proper habitat evaluation the ol	oserver needs to get into the stream. To complete the form,
select the description which best fits the observed habitats and then circle	the score. If the observed habitat falls in between two
descriptions, select an intermediate score. A final habitat score is determ	ined by adding the results from the different metrics.
descriptions, select an intermediate score. A final habitat score is determ Stream <u>UT Mullil</u> for <u>H</u> Location/road: <u>Turer lor 15</u> Date <u>6-15-13</u> <u>CC#030501011,0030</u> Basin <u>GJuub</u>	ad Name)County_Alexande
Date 6-15-13 CC#030501011 030 Basin Gtub	9
Observer(s) $portion or$ Type of Study: \Box Fish β Benthos \Box Basinwi	de Special Study (Describe)
Latitude Longitude Ecoregion: D MT	🛱 P 🗖 Slate Belt 🗖 Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conducti	vity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area you estimate driving thru the watershed in watershed land use.	
Visible Land Use: %Forest %Residential 4	- 1/A - time Part - 43 / A - time Car
Visible Land Use: %Porest %Residential	<u>%</u> Active Pasture <u>%</u> % Active Crops
Watershed land use : \Box Forest \Box Agriculture \Box Urban \Box Animal oper Width: $\underbrace{feet}_{(meters)}$ Stream $\underbrace{\mathcal{L}}_{\Box}$ Channel (at top of bank) $\underbrace{\mathcal{5}}_{\Box}$ S \Box Width variable \Box Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface	rations upstream
Width: (meters) Stream 4 Channel (at top of bank) 5 S	stream Depth: (m) Avg Max
\Box Width variable \Box Large river >25m wide	
Bank Height (from deepest part of riffle to top of bank-first flat surface	you stand on): (m) $\cdot /4 - l$
Bank Angle: 45° or \Box NA (Vertical is 90°, horizontal is 0°	Angles > 90° indicate slope is towards mid-channel, < 90°.
indicate slope is away from channel. NA if bank is too low for bank ang	le to matter.)
Channelized Ditch	
Deeply incised-steep, straight banks DBoth banks undercut at bend	Channel filled in with sediment
 □ Recent overbank deposits □ Excessive periphyton growth □ Bar development □ Heavy filamentous algae grow 	Buried structures Exposed bedrock
□ Excessive periphyton growth □ Heavy filamentous algae grow	th Green tinge Sewage smell
Manmade Stabilization: $\Box N$ $A Y: \Box Rip-rap, cement, gabions \Box Sedi$	ment/grade-control structure Berm/levee
Flow conditions : High Normal Low	
Turbidity: □Clear ♀ Slightly Turbid □Turbid □Tannic □Milky	
Good potential for Wetlands Restoration Project?? 🖾 YES 🗆	INO Details
Channel Flow Status Useful especially under abnormal or low flow conditions.	
A. Water reaches base of both lower banks, minimal channel su	bstrate exposed
B. Water fills >75% of available channel, or <25% of channel su	
C. Water fills 25-75% of available channel, many logs/snags ex	
D. Root mats out of water	
E. Very little water in channel, mostly present as standing pools	
	□ Digital □35mm
Remarks:	
1.VHIMI NOT	

UÌ-(

V. Riffle Habitats

D. G. itime Billion is an effective ser he debrie dem an energy channel area. Biffles Erection to Biffle	a Infraquant
- · · · · ·	es Infrequent
	ore
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream (19 12	
B. riffle as wide as stream but riffle length is not 2X stream width	
C. riffle not as wide as stream and riffle length is not 2X stream width 10 3	
D. riffles absent	11
	Subtotal 16
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Banl	K Rt. Bank
Scor	
A. Banks stable	<u> </u>
	(7)
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. $($	\mathcal{O}
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	$\overline{\overline{0}}$ ///
5. Inde of no bank regetation, mass crosion and bank failure of deficient and the second se	Total 14

Remarks

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading	0
	Ŭ
Remarks Small Suppriss - 1 pa-van Souffer planted 2011	_Subtotal

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees 🛱 Shrubs 🛛 Grasses 🛱 Weeds/old field 🖾 Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)	6	\sim
1. width > 18 meters	(5)	S
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width ≤ 6 meters	0	0
Remarks	T	otal_()
	Page To	tal 40
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	CAL SCORE	

3/06 Revision 6

Habitat Assessment Field Data Sheet **Mountain/ Piedmont Streams Biological Assessment Unit, DWQ TOTAL SCORE** Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Tu = + to- KS Stream UT Nolly for It Location/road: (un houd (Road Name____)County Alexander _____CC#0305010112030 Basin_ Catawbg______Subbasin_ 03 -08-32 Date 6-15-2013 Observer(s) Longitude 4. 2069 Latitude 35. 4316 Ecoregion: 🗆 MT 🛱 P 🗆 Slate Belt 🗆 Triassic Basin Water Quality: Temperature ⁰C DO mg/l Conductivity (corr.) µS/cm pН Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use. Visible Land Use: <u>15</u>%Forest %Residential %Active Pasture <u>75</u>% Active Crops %Fallow Fields %Commercial %Industrial <u>10</u>%Other - Describe: Watershed land use : DForest DAgriculture DUrban D Animal operations upstream Width: (meters) Stream .5 Channel (at top of bank) . Stream Depth: (m) Avg Max . Width variable Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) .5 Bank Angle: ° or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch Deeply incised-steep, straight banks DBoth banks undercut at bend Channel filled in with sediment □ Recent overbank deposits □Bar development Buried structures Exposed bedrock □ Heavy filamentous algae growth □Green tinge Excessive periphyton growth □ Sewage smell Manmade Stabilization: \Box N \Box Y: \Box Rip-rap, cement, gabions \Box Sediment/grade-control structure \Box Berm/levee Flow conditions: \Box High \Box Normal \Box Low Turbidity: Clear Slightly Turbid Turbid Turbid Milky Colored (from dyes) Good potential for Wetlands Restoration Project?? 🕱 YES 🛛 NO Details______ **Channel Flow Status** Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed 図 Ξ B. Water fills >75% of available channel, or <25% of channel substrate is exposed..... C. Water fills 25-75% of available channel, many logs/snags exposed..... D. Root mats out of water..... E. Very little water in channel, mostly present as standing pools..... Weather Conditions: Clear, Super, upper Photos: DN XY X Digital D35mm

Remarks:

42

UI-J

V. Riffle Habitats

	es Infrequent ore
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 12 B. riffle as wide as stream but riffle length is not 2X stream width	
C. riffle not as wide as stream and riffle length is not 2X stream width	17
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	Subtotal [6
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Banl	
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion.	Ð
B. Erosion areas present	6
1. diverse trees, shrubs, grass; plants healthy with good root systems	6 5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident0	0 4 Total

Remarks_

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	. 7
D. Stream with minimal canopy - full sun in all but a few areas	\bigcirc
E. No canopy and no shading	Ö
)
Remarks	Subtotal 🔨

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: 🗆 Trees 🖾 Shrubs 🖾 Grasses 🖄 Weeds/old field 🗆 Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		-
1. width > 18 meters	(5)	(5)
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	. ⁰ 11
Remarks	Т	otal <u>'U</u>
	D T	. 41
	Page To	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	FAL SCORE	<u> </u>

3/06 Revision 6

Biological Assessment Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams Herman Parry UT.3

TOTAL SCORE 9

Watershed land use : \Box Forest \Box Agriculture \Box Urban \Box Animal operations upstream
Width: (meters) Stream Channel (at top of bank) Stream Depth: (m) Avg Max Width variable Large river >25m wide Avg Max
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle:
Good potential for Wetlands Restoration Project?? 🖾 YES 🗆 NO Details Channel Flow Status
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
Weather Conditions: Photos: DN DY Digital D35mm

Remarks:

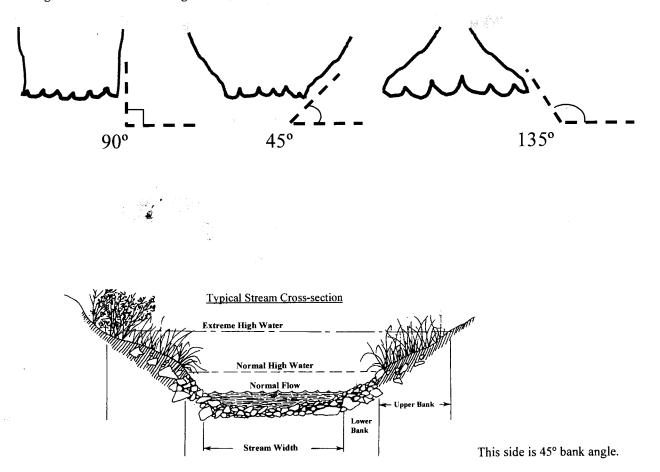
V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area.	Riffles Frequent	Riffles Infrequ	lent
	Score	Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of	stream 16	12	
B. riffle as wide as stream but riffle length is not 2X stream width		7	
C. riffle not as wide as stream and riffle length is not 2X stream width	10	3	
D. riffles absent	0		11
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream		Subtotal	7
VI. Bank Stability and Vegetation			

FACE UPSTREAM	Left Bank	Rt. Bank
	<u>Score</u>	<u>Score</u>
A. Banks stable	6	\cap
1. little evidence of erosion or bank failure(except outside of bends), little potential for er	osion(7)	(7)
B. Erosion areas present	\smile	\mathbf{O}
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high	flow 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	0 14
		Total
Remarks Streum restored.		

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric. ~

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	(2)
E. No canopy and no shading	- Y
)
Remarks	<u>Subtotal</u>


VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)	~	~
1. width $>$ 18 meters	(5)	(5)
2. width 12-18 meters	-4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0 [/)
Remarks	Т	otal_ <u>'</u>
	Page To	tal 40
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	AL SCORE	~

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

Site Sketch:

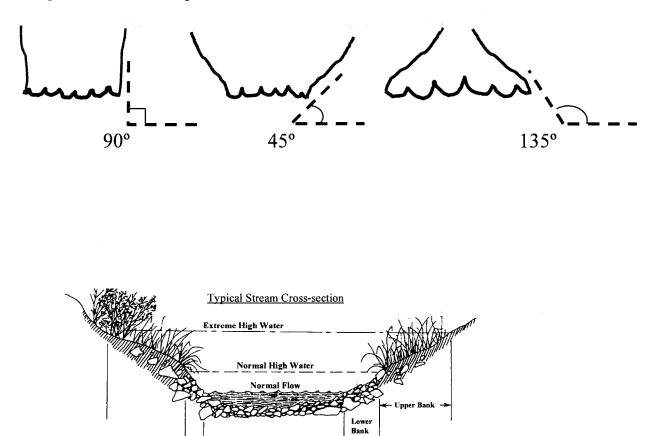
لأسجع

	U1-3
. Channel Modification	<u>Score</u> (5)
A. channel natural, frequent bends	(5)
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape.	/height /
lemarksS	ubtotal フ
RemarksS	ubtotal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **Rare**, Common, or Abundant.

<u>A</u> Rocks <u>(</u> Macrophytes <u>A</u> Sticks and leafpack	is R	Snags and logs 🗼	Undercut ban	ks or root	mats
AMOUNT OF REACH FAVO			20-40%	<20%	
	>70%	40-70%			
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	(G)	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				16
□ No woody vegetation in riparian zone Remarks_					Subtotal $\underline{17}$

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.


A. substrate with good mix of gravel, cobble and boulders	<u>Scoi</u>	<u>e</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	(1)	
3. embeddedness 40-80%	$\widetilde{6}$	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand		
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	
	Subtotal	11

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	~
a. variety of pool sizes	(10)
b. pools about the same size (indicates pools filling in)	8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	$\frac{0}{10}$
□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk □ Silt bottom □ Some pools over w Remarks	ader depth
	Page Total

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

Stream Width

This side is 45° bank angle.

Site Sketch:

Other comments:	
Abundant tadpole	

UT-2

I. Channel Modification A. channel natural, frequent bends	Score
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/h	eight 🗩
RemarksSub	total <u>5</u>

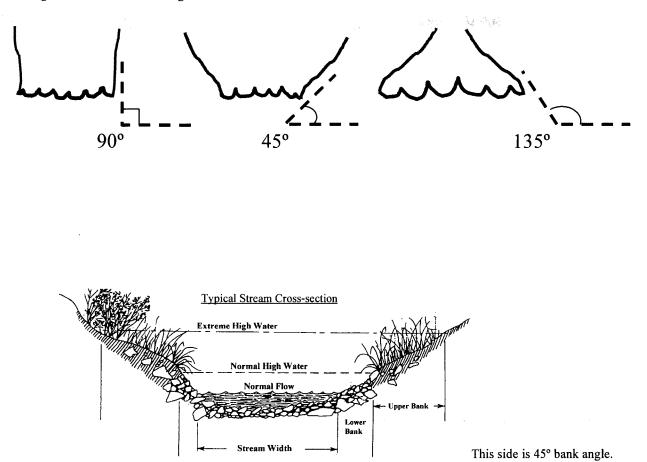
II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

<u>C</u>Rocks <u>A</u>Macrophytes <u>C</u>Sticks and leafpacks <u>R</u>Snags and logs <u>R</u>Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER					
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	(D)	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				16
□ No woody vegetation in riparian zone Remarks_					Subtotal_15

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	<u>Score</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	14
2. embeddedness 20-40%	11
3. embeddedness 40-80%	6
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	3
2. substrate nearly all sand	3
3. substrate nearly all detritus	2
4. substrate nearly all silt/ clay	1 (
	Subtotal O


IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	<u>Score</u>
1. Pools Frequent (>30% of 200m area surveyed)	\sim
a. variety of pool sizes	Ŵ
b. pools about the same size (indicates pools filling in)	8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0 m
Subt	otal 0
Development Pool bottom boulder-cobble=hard Development Bottom sandy-sink as you walk Silt bottom Some pools over wade	r depth
Remarks	21

UT

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

Site Sketch:

Other comments:	

4T · (

I. Channel Modification	Score
	Ś
B. channel natural, infrequent bends (channelization could be old)	
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape	/height
RemarksS	ubtotal 5
	-

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

<u>C</u> Rocks <u>Macrophytes</u> <u><i>R</i>Sticks and leafpace</u>	ks <u>A</u> s	nags and logs <u>C</u>	Undercut ban	ks or root	mats
AMOUNT OF REACH FAVO	RABLE	FOR COLONIZAT	TON OR COV	VER	• *
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	(8)	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				,
□ No woody vegetation in riparian zone Remarks					Subtotal S

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Scor	<u>-e</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%.	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	11	
3. embeddedness 40-80%	6	
4. embeddedness >80%	$\widetilde{2}$	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand		
3. substrate nearly all detritus		
4. substrate nearly all silt/ clay	. 1	1
Remarks	_Subtotal_	6

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	<u>Score</u>
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	. (0)
b. pools about the same size (indicates pools filling in)	. 8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	. 4
B. Pools absent	0 , .
	Subtotal ()

□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk □ Silt bottom □ Some pools over wader depth Remarks______

Page Total 29